精英家教网 > 高中数学 > 题目详情
4.如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是$\frac{1}{2}$.

分析 由题意,△ABD≌△PBD,可以理解为△PBD是由△ABD绕着BD旋转得到的,对于每段固定的AD,底面积BCD为定值,要使得体积最大,△PBD必定垂直于平面ABC,此时高最大,体积也最大.

解答 解:如图,M是AC的中点.
①当AD=t<AM=$\sqrt{3}$时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AE,
DM=$\sqrt{3}$-t,由△ADE∽△BDM,可得$\frac{h}{1}=\frac{t}{\sqrt{(\sqrt{3}-t)^{2}+1}}$,∴h=$\frac{t}{\sqrt{(\sqrt{3}-t)^{2}+1}}$,
V=$\frac{1}{3}•\frac{1}{2}•(2\sqrt{3}-t)•1•$$\frac{t}{\sqrt{(\sqrt{3}}-t)^{2}+1}$=$\frac{1}{6}•$$\frac{3-(\sqrt{3}-t)^{2}}{\sqrt{(\sqrt{3}-t)^{2}+1}}$,t∈(0,$\sqrt{3}$)
②当AD=t>AM=$\sqrt{3}$时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AH,
DM=t-$\sqrt{3}$,由等面积,可得$\frac{1}{2}•AD•BM=\frac{1}{2}•BD•AH$,∴$\frac{1}{2}•t•1=\frac{1}{2}\sqrt{(t-\sqrt{3})^{2}+1}$,
∴h=$\frac{t}{\sqrt{(\sqrt{3}-t)^{2}+1}}$,
∴V=$\frac{1}{3}•\frac{1}{2}•(2\sqrt{3}-t)•1•$$\frac{t}{\sqrt{(\sqrt{3}}-t)^{2}+1}$=$\frac{1}{6}•$$\frac{3-(\sqrt{3}-t)^{2}}{\sqrt{(\sqrt{3}-t)^{2}+1}}$,t∈($\sqrt{3}$,2$\sqrt{3}$)
综上所述,V=$\frac{1}{6}•$$\frac{3-(\sqrt{3}-t)^{2}}{\sqrt{(\sqrt{3}-t)^{2}+1}}$,t∈(0,2$\sqrt{3}$)
令m=$\sqrt{(\sqrt{3}-t)^{2}+1}$∈[1,2),则V=$\frac{1}{6}•\frac{4-{m}^{2}}{m}$,∴m=1时,Vmax=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查体积最大值的计算,考查学生转化问题的能力,考查分类讨论的数学思想,对思维能力和解题技巧有一定要求,难度大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知α,β∈(-$\frac{π}{4}$,0),且3sinβ=sin(2α+β),4$\sqrt{3}$tan$\frac{α}{2}$=tan2$\frac{α}{2}$-1,求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合A={x||x-2|<1},B={x|x>a},若A∩B=A,则实数a的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在锐角△ABC中,a,b,c分别为角A,B,C所对的边,且$\sqrt{3}$a=2csinA,c=$\sqrt{7}$,且△ABC的面积为$\frac{3\sqrt{3}}{2}$,则a+b=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁RQ)=(  )
A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.过原点与圆(x-2)2+(y+1)2=4相切的直线方程为(  )
A.y=-$\frac{3}{4}$xB.y=$\frac{3}{4}$xC.y=-$\frac{3}{4}$x或x=0D.y=$\frac{3}{4}$x或x=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若直线l不经过第二象限,求实数a的取值范围;
(2)若直线l与两坐标轴围成的三角形面积等于2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(Ⅰ)求证:BF⊥平面ACFD;
(Ⅱ)求直线BD与平面ACFD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.455与299的最大公约数13.

查看答案和解析>>

同步练习册答案