精英家教网 > 高中数学 > 题目详情
19.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁RQ)=(  )
A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)

分析 运用二次不等式的解法,求得集合Q,求得Q的补集,再由两集合的并集运算,即可得到所求.

解答 解:Q={x∈R|x2≥4}={x∈R|x≥2或x≤-2},
即有∁RQ={x∈R|-2<x<2},
则P∪(∁RQ)=(-2,3].
故选:B.

点评 本题考查集合的运算,主要是并集和补集的运算,考查不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知定义在R上的函数f(x)满足(x+6)+f(x)=0,函数y=f(x-1)关于点(1,0)对称,则f(2016)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=$\sqrt{5}$,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,则$\frac{\overrightarrow{AB}•\overrightarrow{BC}}{|\overrightarrow{BC}|}$=(  )
A.$\frac{\sqrt{6}}{6}$B.-$\frac{\sqrt{6}}{6}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知复数z=$\frac{10}{3+i}$-2i,其中i是虚数单位,则|z|等于$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=sin2$\frac{ωx}{2}$+$\frac{1}{2}$sinωx-$\frac{1}{2}$(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是(  )
A.(0,$\frac{1}{8}$]B.(0,$\frac{1}{4}$]∪[$\frac{5}{8}$,1)C.(0,$\frac{5}{8}$]D.(0,$\frac{1}{8}$]∪[$\frac{1}{4}$,$\frac{5}{8}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.下面是某港口一天中部分时刻测量得到的水深表(时间单位:小时,水深单位:米)
时刻0:003:006:009:0012:0015:0018:0021:0024:00
水深6.58.56.54.56.58.56.54.56.5
若该港口水深关于时间的函数可以用y=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$),x∈[0,24)近似地表示:
(1)试求出函数的解析式;
(2)某船吃水深度(船底与水面之间的距离)是4米,安全条例规定要有大于或等于3.5米的安全间隙(船底与海洋底之间的距离),问一天中在x∈[0,12]时间段,若要使此船连续停泊该港口时间最长,此船应何时进入该港口、何时离开该港口?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=x3+3x2+1,已知a≠0,且f(x)-f(a)=(x-b)(x-a)2,x∈R,则实数a=-2,b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={{x|$\frac{1}{4}$<2x<16},B={x|y=ln(x2-3x)},从集合A中任取一个元素,则这个元素也是集合B中元素的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案