精英家教网 > 高中数学 > 题目详情
如图,在半径为2
3
、圆心角为60°的扇形的弧AB上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点M,N在OB上,设矩形PNMQ的面积为y.
(Ⅰ)按下列要求求出函数关系式并写出定义域:
①设PN=x,将y表示成x的函数关系式;
②设∠POB=θ,将y表示成θ的函数关系式.
(Ⅱ)请你选用(Ⅰ)中的一个函数关系式,求y的最大值.
考点:弧度制的应用
专题:计算题,三角函数的求值
分析:(Ⅰ)①求出MN,PN可将y表示成x的函数关系式;②在Rt△PON中,利用直角三角形中的边角关系求得 PN=Rsinθ,ON=Rcosθ,以及MQ和OM,可得关于矩形的面积S的解析式,化简可得结果;
(2)由②得y=6sin2θ-2
3
(1-cos2θ)
=4
3
sin(2θ+
π
6
)-2
3
,故当θ=
π
6
时,y取得最大值.
解答: 解:(1)①因为QM=PN=x,所以OM=
QM
tan600
=
x
3
,又ON=
12-x2

所以MN=ON-OM=
12-x2
-
x
3

y=MN•PN=x•
12-x2
-
3
x2
3
(0<x<3),
②当∠POB=θ时,QM=PN=2
3
sinθ
,则OM=
QM
tan600
=2sinθ
,又ON=2
3
cosθ

所以MN=ON-OM=2
3
cosθ-2sinθ

y=MN•PN=12sinθcosθ-4
3
sin2θ
0<θ<
π
3
);

(2)由②得y=6sin2θ-2
3
(1-cos2θ)
=4
3
sin(2θ+
π
6
)-2
3

故当θ=
π
6
时,y取得最大值为2
3
点评:本题主要考查直角三角形中的边角关系,三角函数的恒等变换,正弦函数的定义域和值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某部队驻扎在青藏高原上,那里海拔高、寒冷缺氧、四季风沙、没有新鲜蔬菜,生活条件极为艰苦.但战士们不计个人得失,扎根风雪高原,以钢铁般的意志,自力更生,克服恶劣的自然环境.该部队现计划建造一个室内面积为800m2的矩形蔬菜温室,在温室内,与左、右两侧及后侧的内墙各保留1m宽的通道,与前侧内墙保留3m宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

计算(-2)50+(-2)49+(-2)48+…+(-2)+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知向量
a
=(sinθ,-2)与
b
=(1,cosθ)互相垂直,其中θ∈(0,
π
2
).求sinθ和cosθ的值;
(2)已知非零向量
a
b
满足|
a
|=1,(
a
-
b
)•(
a
+
b
)=
1
2
,且
a
b
=
1
2
.求向量
a
-
b
的模.

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数y=f(x)的最小值等于4,且f(0)=f(2)=6
(1)求f(x)的解析式;
(2)若函数f(x)的定义域为[-1,4],求f(x)的值域;
(3)若函数f(x)的定义域为[a,a+1],f(x)的值域为[12,22],求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下是某地搜集到的新房屋的销售价格y(万元)和房屋的面积x(m2)的数据,若由资料可知y对x呈线性相关关系.
x 80 90 100 110 120
y 48 52 63 72 80
试求:(1)线性回归方程;
(2)根据(1)的结果估计当房屋面积为150m2时的销售价格.
参考公式:b=
n
i=1
xiyi-n
x
y
n
i=1
x
2
i
-n
x
2
=
n
i=1
(xi-
x
)(yi-
y
)
n
i=1
(xi-
x
)2
=
Sxy
S
2
X

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.
(Ⅰ)证明:DE⊥SC
(Ⅱ)求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:?x∈R,x2+2ax-a=0,命题q:方程x2+ax+1=0有两个不相等的负根.如果命题“p∨q”为真命题”,“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=i+i2+i3+i4的值是
 

查看答案和解析>>

同步练习册答案