精英家教网 > 高中数学 > 题目详情
12.求证:1•${A}_{1}^{1}$+2${•A}_{2}^{2}$+3${•A}_{3}^{3}$+…+(n-1)${A}_{n-1}^{n-1}$=n!-1.

分析 根据An+1n+1-Ann=nAnn对式子进行化简,即可证明1A11+2A22+3A33+…+nAnn=n!-1.

解答 证明:∵n${A}_{n}^{n}$=n•n!=(n+1)!-n!=${A}_{n+1}^{n+1}$-${A}_{n}^{n}$,
∴1•${A}_{1}^{1}$+2${•A}_{2}^{2}$+3${•A}_{3}^{3}$+…+(n-1)${A}_{n-1}^{n-1}$
=(A22-A11)+(A33-A22)+…+(Ann-An-1n-1
=Ann-A11
=n!-1.

点评 本题考查了排列数公式的应用问题,利用公式An+1n+1-Ann=nAnn对式子进行化简是解题的关键,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若y=sin$\frac{2π}{3}$,则y′=(  )
A.-$\frac{\sqrt{3}}{2}$B.0C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在正六边形ABCDEF中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AF}$=$\overrightarrow{b}$,求$\overrightarrow{AC}$,$\overrightarrow{AD}$,$\overrightarrow{AE}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知椭圆有如下性质:F是椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点,直线l:x=$\frac{{a}^{2}}{c}$为C的右准线,点P是椭圆上的任意一点,设d表示P到l的距离,那么可得$\frac{|PF|}{d}$=t(t为定值).类比椭圆的上述性质,双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}$=1上一点P到右焦点F与右准线的距离d之比为(  )
A.$\frac{1}{2}$B.$\sqrt{2}$C.2D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.比较${∫}_{0}^{\frac{π}{2}}$sin5xdx与${∫}_{0}^{\frac{π}{2}}$sinxdx的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.光线沿着直线y=-3x+b射到直线x+y=0上,经反射后沿着直线y=ax+2射出,则有(  )
A.a=$\frac{1}{3}$,b=6B.a=-$\frac{1}{3}$,b=-6C.a=3,b=-$\frac{1}{6}$D.a=-3,b=$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,且c-a(cosB+$\frac{\sqrt{3}}{3}$sinB)=0.
(1)求角A的大小;
(2)若a=$\sqrt{3}$,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若${C}_{n}^{0}$+$\frac{1}{2}$${C}_{n}^{1}$+$\frac{1}{3}$${C}_{n}^{2}$+…+$\frac{1}{n+1}$${C}_{n}^{n}$=$\frac{31}{n+1}$,求(1-2x)2n的展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数$f(x)={log_2}({2x-{x^2}})$单调减区间为[1,2).

查看答案和解析>>

同步练习册答案