精英家教网 > 高中数学 > 题目详情
11.对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1]时,f(x)=x2,则y=f(x)与y=log5x的图象的交点个数为(  )
A.3B.4C.5D.6

分析 f(x)是周期为2的周期性函数,根据函数的周期性画出图形,利用数形结合思想能求出y=f(x)与y=log5x的图象的交点个数.

解答 解:∵函数y=f(x)(x∈R)满足f(x+2)=f(x),
∴f(x)是周期为2的周期性函数,
又x∈[-1,1]时,f(x)=x2
根据函数的周期性画出图形,如图,
由图可得y=f(x)与y=log5x的图象有4个交点
故选:B.

点评 本题考查两个函数的图象的交点个数的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若a=20.5,b=logπ3,c=-log23,则(  )
A.a<c<bB.c<a<bC.c<b<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.定义在区间D上的函数f(x),如果满足:对任意x∈D,都存在常数M≥0,有|f(x)|≤M,则称f(x)是区间D上有界函数,其中M称为f(x)上的一个上界,已知函数g(x)=log${\;}_{\frac{1}{2}}$$\frac{1-ax}{1-x}$为奇函数.
(1)求函数g(x)在区间[$\frac{1}{3}$,$\frac{3}{5}$]上的所有上界构成的集合;
(2)若g(1-m)+g(1-m2)<0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数$y={(\frac{1}{2})^{{x^2}-2}}$的值域是(0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,矩形草坪AMPN中,点C在对角线MN上.CD垂直于AN于点D,CB垂直于AM于点B,|CD|=|AB|=3米,|AD|=|BC|=2米,设|DN|=x米,|BM|=y米.求这块矩形草坪AMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sin2$\frac{x}{2}$+$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若x∈[$\frac{π}{2}$,π],求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设平面向量$\overrightarrow{a}$=(5,3),$\overrightarrow{b}$=(1,-2),则$\overrightarrow{a}$-2$\overrightarrow{b}$等于(  )
A.(3,7)B.(7,7)C.(7,1)D.(3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>1)}\\{{x}^{2}+1(x≤1)}\end{array}\right.$,则f(f(1))的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,a,b,c分别为三个内角A,B,C所对的边,设向量$\overrightarrow{m}$=(b-c,c-a),$\overrightarrow{n}$=(b,c+a),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.若直线y=bx+c过圆C:x2+y2-2x-2y=1的圆心,则△ABC面积的最大值为(  )
A.$\frac{\sqrt{2}}{6}$B.$\frac{\sqrt{3}}{16}$C.2$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案