精英家教网 > 高中数学 > 题目详情
7.以正方形的一条边的两个端点为焦点,且过另外两个顶点的椭圆与双曲线的离心率之积为(  )
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.2

分析 设正方形的边长为t,对角线的长为$\sqrt{2}$t,由椭圆和双曲线的定义,结合离心率公式e=$\frac{2c}{2a}$,计算即可得到所求离心率的乘积.

解答 解:设正方形的边长为t,对角线的长为$\sqrt{2}$t,
以正方形的一条边的两个端点为焦点,
且过另外两个顶点的椭圆的离心率为${e_1}=\frac{t}{{\sqrt{2}t+t}}=\frac{1}{{\sqrt{2}+1}}$,
双曲线的离心率为${e_2}=\frac{t}{{\sqrt{2}t-t}}=\frac{1}{{\sqrt{2}-1}}$,
故它们的积为1,
故选A.

点评 本题考查椭圆和双曲线的离心率的乘积,注意运用正方形的性质和椭圆、双曲线的定义,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在等比数列{an}中,S10=48,S20=60,则S30=63.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$为等轴曲线,过右焦点F作x轴的垂线交双曲线与A,B两点,若|AB|=2$\sqrt{2}$,△OAB(O为坐标原点)的面积为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.4$\sqrt{2}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F且垂直于x轴的直线在第一象限内与C、C的渐近线的交点分别为A、B,若A是BF的中点,则C的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点F是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左焦点,点E是该双曲线的右焦点,过点F且垂直于x轴的直线与双曲线交于A、B两点,△ABE是直角三角形,则该双曲线的离心率为1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ln(ex+a+1)(a为常数)是实数集R上的奇函数.
(1)求实数a的值;
(2)若关于x的方程$\frac{1nx}{f(x)}={x^2}-2ex+m$有且只有一个实数根,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线x2-$\frac{{y}^{2}}{3}$=1的左、右焦点分别为F1、F2,P为双曲线右支上一点,点Q的坐标为(-2,3),则|PQ|+|PF1|的最小值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线为$\frac{x^2}{16}-\frac{y^2}{9}=1$,则双曲线的右焦点到其渐近线的距离为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图(1),在等腰梯形ABCD中,AB∥CD,E,F分别为AB和CD的中点,且AB=EF=2,CD=6,M为EC中点,现将梯形ABCD沿EF所在直线折起,使平面EFCB⊥平面EFDA,如图(2)所示,N是CD的中点.
(Ⅰ)求证:MN∥平面ADFE;
(Ⅱ)求四棱锥M-EFDA的体积.

查看答案和解析>>

同步练习册答案