分析 依题意,可求得F1(-4,0),F2(4,0),P在双曲线的右支上,利用双曲线的定义|PF1|-|PF2|=4,可求得|PF1|=|PF2|+4,从而可求得|PF1|+|PQ|的最小值.
解答 解:由双曲线方程得a=1,c=2
∵P在双曲线的右支上,
∴|PF1|-|PF2|=2,
∴|PF1|=|PF2|+2,
又双曲线右焦点F2(2,0),
∴|PF1|+|PQ|=|PF2|+4+|PQ|≥|QF2|+2
=$\sqrt{(-2-2)^{2}+{3}^{2}}$+2═5+2=7,(当且仅当Q、P、F2三点共线时取“=”).![]()
则|PQ|+|PF1|的最小值为7.
故答案为:7.
点评 本题考查双曲线的简单性质,利用双曲线的定义将|PF1|转化为|PF2|+2是关键,考查转化思想与应用不等式的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{4\sqrt{5}}}{5}$ | B. | $\frac{{8\sqrt{5}}}{5}$ | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ±1 | B. | $±\frac{{\sqrt{2}}}{2}$ | C. | $±\sqrt{2}$ | D. | $±\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com