精英家教网 > 高中数学 > 题目详情
19.已知双曲线x2-$\frac{{y}^{2}}{3}$=1的左、右焦点分别为F1、F2,P为双曲线右支上一点,点Q的坐标为(-2,3),则|PQ|+|PF1|的最小值为7.

分析 依题意,可求得F1(-4,0),F2(4,0),P在双曲线的右支上,利用双曲线的定义|PF1|-|PF2|=4,可求得|PF1|=|PF2|+4,从而可求得|PF1|+|PQ|的最小值.

解答 解:由双曲线方程得a=1,c=2
∵P在双曲线的右支上,
∴|PF1|-|PF2|=2,
∴|PF1|=|PF2|+2,
又双曲线右焦点F2(2,0),
∴|PF1|+|PQ|=|PF2|+4+|PQ|≥|QF2|+2
=$\sqrt{(-2-2)^{2}+{3}^{2}}$+2═5+2=7,(当且仅当Q、P、F2三点共线时取“=”).
则|PQ|+|PF1|的最小值为7.
故答案为:7.

点评 本题考查双曲线的简单性质,利用双曲线的定义将|PF1|转化为|PF2|+2是关键,考查转化思想与应用不等式的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知四边形ABCD为平行四边形,BD⊥AD,BD=AD,AB=2,四边形ABEF为正方形,且平面ABEF⊥平面ABCD.
(1)求证:BD⊥平面ADF;
(2)若M为CD中点,证明:在线段EF上存在点N,使得MN∥平面ADF,并求出此时三棱锥N-ADF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的离心率$\sqrt{5}$,则该双曲线的一条渐近线被圆C:x2+y2-2x-3=0截得的弦长为(  )
A.$\frac{{4\sqrt{5}}}{5}$B.$\frac{{8\sqrt{5}}}{5}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.以正方形的一条边的两个端点为焦点,且过另外两个顶点的椭圆与双曲线的离心率之积为(  )
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,O为坐标原点.若|AF|=3,且△AOB的面积为$\frac{{3\sqrt{2}}}{2}$,则点B的纵坐标为(  )
A.±1B.$±\frac{{\sqrt{2}}}{2}$C.$±\sqrt{2}$D.$±\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线mx2-ny2=1(m>0、n>0)的离心率为2,则椭圆mx2+ny2=1的离心率为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设不等式组$\left\{\begin{array}{l}x-y≤0\\ x+y≤4\\ x≥1\end{array}\right.$表示的平面区域为M,若直线l:y=k(x+2)上存在区域M内的点,则k的取值范围是$[\frac{1}{3},\;1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点P和点Q的纵坐标相同,P的横坐标是Q的横坐标的3倍,P和Q的轨迹分别为双曲线C1和C2,若C1的渐近线方程为y=±$\sqrt{3}$x,则C2的渐近线方程为y=±$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.棱长为1的正方体ABCD-A1B1C1D1中,沿平面A1ACC1将正方体分成两部分,其中一部分如图所示,过直线A1C的平面A1CM与线段BB1交于点M.
(Ⅰ)当M与B1重合时,求证:MC⊥AC1
(Ⅱ)当平面A1CM⊥平面A1ACC1时,求平面A1CM分几何体所得两部分体积之比.

查看答案和解析>>

同步练习册答案