精英家教网 > 高中数学 > 题目详情
3.已知i是虚数单位,复数z=$\frac{1}{a-i}$(a∈R)在复平面内对应的点位于直线x+2y=0上,则a=(  )
A.2B.$\frac{1}{2}$C.-2D.$-\frac{1}{2}$

分析 利用复数的运算法则、几何意义即可得出.

解答 解:∵复数z=$\frac{1}{a-i}$=$\frac{a+i}{(a-i)(a+i)}$=$\frac{a}{{a}^{2}+1}$+$\frac{1}{{a}^{2}+1}$i在复平面内对应的点($\frac{a}{{a}^{2}+1}$,$\frac{1}{{a}^{2}+1}$)在位于直线x+2y=0上,
∴$\frac{a}{{a}^{2}+1}$+2×$\frac{1}{{a}^{2}+1}$=0,解得a=-2.
故选:C.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图所示的三幅图中,图(1)所示的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图如图(2)(3)所示(单位:cm).
(1)按照画三视图的要求将右侧三视图补充完整.
(2)按照给出的尺寸,求该多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.f(x)=$\left\{\begin{array}{l}{lo{g}_{2}({2}^{x}-8),x>3}\\{f(x+2),x≤3}\end{array}\right.$ 则f(0)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.圆心坐标为(4,0)且经过点(0,3)的圆的方程是(  )
A.x2+(y-4)2=25B.(x-4)2+y2=25C.x2+(y-4)2=25D.(x+4)2+y2=25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知中心在原点的双曲线C的右焦点为(2,0),右顶点为($\sqrt{3}$,0).
(1)求双曲线C的方程;
(2)若直线l:y=x+2与双曲线交于A,B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\overrightarrow{BA}$•$\overrightarrow{BC}$,sinA=$\frac{3}{5}$.
(1)求sinC的值;
(2)设D为AC的中点,若△ABC的面积为6,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“数列{an}前n项和是Sn=An2+Bn+C的形式,则数列{an}为等差数列”的逆命题,否命题,逆否命题这三个命题中,真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知F1(-3,0),F2(3,0)是椭圆$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1的两个焦点,点P在椭圆上,∠F1PF2=α.当α=$\frac{2π}{3}$时,△F1PF2面积最大,则m+n的值是(  )
A.41B.15C.9D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知i为虚数单位,a为实数,复数z=(a-2i)i在复平面内对应的点为M,则“a<-2”是“点M在第四象限”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案