分析 (Ⅰ)根据f(x)=0,得到关于m的不等式,解出m的范围即可;
(Ⅱ)求导数,换元,存在t1∈(0,$\frac{m}{2}$),使得g(t1)=0,另外有m∈($\frac{m}{2}$,1),使得g(m)=0,再利用反证法,即可得出结论.
解答 解:(Ⅰ)由f(x)=0得:$\left\{\begin{array}{l}{x^3}-mx=0\\{x^2}+1-m>0\end{array}\right.$或ln(x2+1-m)=0,
可得$\left\{\begin{array}{l}x=0\\ 1-m>0\end{array}\right.$或$\left\{\begin{array}{l}{x^2}=m\\ m>0\end{array}\right.$,
方程f(x)=0有3个不同的根,
从而0<m<1;
(Ⅱ)由(Ⅰ)得:0<m<1,
f′(x)=(3x2-m)ln(x2+1-m)+$\frac{2{x}^{2}({x}^{2}-m)}{{x}^{2}+1-m}$,
令x2=t,设$g(t)=(3t-m)ln(t+1-m)+\frac{2t(t-m)}{t+1-m}$,
∴g(0)=-mln(1-m)>0,∵0<m<1,
∴2-m>1,∴g(1)>0.g(a)=0,
$g(\frac{m}{2})=\frac{m}{2}ln(1-\frac{m}{2})+\frac{{m•(-\frac{m}{2})}}{{1-\frac{m}{2}}}=\frac{m}{2}ln(1-\frac{m}{2})-\frac{m^2}{2-m}$,
∵0<m<1,∴g($\frac{m}{2}$)<0
∴存在t1∈(0,$\frac{m}{2}$),使得g(t1)=0,另外有m∈($\frac{m}{2}$,1),使得g(a)=0
假设存在实数m,使得f(x)在(0,1)上恰有两个极值点x1,x2,且满足x2=2x1,
则存在x1∈(0,$\sqrt{\frac{m}{2}}$),使得f′(x1)=0,另外有f′($\sqrt{m}$)=0,即x2=$\sqrt{m}$,
∴x1=$\frac{\sqrt{m}}{2}$,∴f′($\frac{\sqrt{m}}{2}$)=0,即(1-$\frac{3}{4}$m)ln(1-$\frac{3}{4}$m)+$\frac{3}{2}$m=0 (*)
设h(m)=(1-$\frac{3}{4}$m)ln(1-$\frac{3}{4}$m)+$\frac{3}{2}$m,
∴h′(a)=-$\frac{3}{4}$mln(1-$\frac{3}{4}$m)+$\frac{3}{4}$,
∵0<m<1,∴h′(m)>0,
∴h(m)在(0,1)上是增函数
∴h(m)>h(0)=0
∴方程(*)无解,
即不存在实数m,使得f(x)在(0,1)上恰有两个极值点x1,x2,且满足x2=2x1.
点评 本题考查导数知识的综合运用,考查函数的单调性,考查函数的极值,考查反证法的运用,有难度.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (-1,0) | C. | (-2,-1) | D. | (-6,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 28π | B. | 32π | C. | 36π | D. | 48π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com