精英家教网 > 高中数学 > 题目详情
17.半径为2的球O内有一内接正四棱柱(底面是正方形,侧棱垂直底面),当该正四棱柱的侧面积最大时,球的表面积与该四棱柱的侧面积之差是16π-16$\sqrt{2}$.

分析 设正四棱柱的底面边长为a,高为h,则2a2+h2=16≥2$\sqrt{2}$ah,可得正四棱柱的侧面积最大值,即可求出球的表面积与该四棱柱的侧面积之差.

解答 解:设正四棱柱的底面边长为a,高为h,则2a2+h2=16≥2$\sqrt{2}$ah,
∴ah≤4$\sqrt{2}$,当且仅当h=$\sqrt{2}$a=$\sqrt{2}$时取等号,
∴正四棱柱的侧面积S=4ah≤16$\sqrt{2}$,
∴该正四棱柱的侧面积最大时,h=2$\sqrt{2}$,a=2,
∴球的表面积与该四棱柱的侧面积之差是4π•22-16$\sqrt{2}$=16π-16$\sqrt{2}$.
故答案为:16π-16$\sqrt{2}$.

点评 本题考查球的表面积与该四棱柱的侧面积之差,考查学生的计算能力,正确运用基本不等式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+3|-m,m>0,f(x-3)≥0的解集为(-∞,-2]∪[2,+∞).
(Ⅰ)求m的值;
(Ⅱ)若?x∈R,使得$f(x)≥|{2x-1}|-{t^2}+\frac{3}{2}t+1$成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=ax2+b(lnx-x),g(x)=-$\frac{1}{2}x$2+(1-b)x,已知曲线y=f(x)在点(1,f(1))处的切线与直线x-y+1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)求函数f(x)的极值点;
(Ⅲ)若对于任意b∈(1,+∞),总存在x1,x2∈[1,b],使得f(x1)-f(x2)-1>g(x1)-g(x2)+m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知{an}是各项均为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a2,a3-3b2=2.
(1)求{an}和{bn}的通项公式;
(2)设数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,求Sn和Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$f(x)=({x^3}-mx)ln({x^2}+1-m)_{\;}^{\;}(m∈R)$,方程f(x)=0有3个不同的根.
(Ⅰ)求实数m的取值范围;
(Ⅱ)是否存在实数m,使得f(x)在(0,1)上恰有两个极值点x1,x2且满足x2=2x1,若存在,求实数m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知a,b,m都是正数,且a<b,用分析法证明$\frac{a+m}{b+m}$>$\frac{a}{b}$;
(2)已知数列{an}的通项公式为an=$\frac{{3}^{n}-1}{2}$,n∈N*.利用(1)的结论证明如下等式:$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{a_n}<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,PA、PC切⊙O于A、C,PBD为⊙O的割线.
(1)求证:AD•BC=AB•DC;
(2)已知PB=2,PA=3,求△ABC与△ACD的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知方程ln|x|-ax2+$\frac{3}{2}$=0有4个不同的实数根,则实数a的取值范围是(  )
A.$({0,\frac{e^2}{2}})$B.$({0,\frac{e^2}{2}}]$C.$({0,\frac{e^2}{3}})$D.$({0,\frac{e^2}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a,b∈R+,且ab=9,则a+b的最小值为(  )
A.3B.4C.6D.9

查看答案和解析>>

同步练习册答案