分析 (1)设出二次函数,利用函数的解析式,化简表达式,通过比较系数,求出函数的解析式.
(2)利用二次函数根与系数的关系,列出不等式,求解a的范围即可.
解答 解:(1)设f(x)=ax2+bx+c(a≠0),
则f(x+1)+f(x)=2ax2+(2a+2b)x+a+b+2c=2x2-2x-3…3分
所以$\left\{\begin{array}{l}2a=2\\ 2a+2b=-2\\ a+b+2c=-3\end{array}\right.$,解得:a=1,b=-2,c=-1,
从而f(x)=x2-2x-1…7分
(2)令g(x)=f(x)-a=x2-2x-1-a=0
由于-1<x1<2<x2,所以$\left\{\begin{array}{l}g(-1)>0\\ g(2)<0\end{array}\right.$…10分
解得-1<a<2…14分.
点评 本题考查二次函数的性质,函数的解析式的求法,考查计算能力以及转化思想的应用.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{5}$或$\frac{{\sqrt{5}}}{2}$ | D. | $\sqrt{3}$或$\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,3] | B. | [3,+∞) | C. | (-∞,2] | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | 3 | C. | 6 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | 1 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com