精英家教网 > 高中数学 > 题目详情
已知非零向量
e1
e2
不共线,如果
AB
=
e1
+
e2
AC
=2
e1
+8
e2
AD
=3
e1
-3
e2
,求证:A、B、C、D共面.
考点:平面向量的基本定理及其意义
专题:空间向量及应用
分析:
AB
AC
AD
,根据平面向量基本定理便可求出λ,μ,所以根据空间向量共面的充要条件即可得到
AB
AC
AD
三向量共面,所以A,B,C,D共面.
解答: 证明:假设
AB
AC
AD
,λ,μ∈R;
e1
+
e2
=λ(2
e1
+8
e2
)
+μ(3
e1
-3
e2
)

整理得:(1-2λ-3μ)
e1
+(1-8λ+3μ)
e2
=
0

e1
e2
不共线;
1-2λ-3μ=0
1-8λ+3μ=0

解得λ=
1
10
,μ=
4
15

AB
=
1
10
AC
+
4
15
AD

AC
AD
不共线;
∴根据空间向量共面的充要条件即知
AB
AC
AD
三向量共面;
∴A,B,C,D共面.
点评:平面向量基本定理,以及空间向量共面的充要条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn(n∈N*).若S3,S9,S6成等差数列,则 
a8
a2+a5
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算A
 
m
x
=x(x-1)(x-2)…(x-m+1),其中x∈R,m∈N,已知函数f(x)=aA
 
3
x+1
-12A
 
2
x
+1,(a∈R,且a≠0)在x=1处取得极值,且方程f(x)=6x-
16
x
在区间(m,m+1)(m∈N*)内有且只有两两不相等的实数根,则(1)实数a的值为
 
;(2)正整数m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y满足方程x2+y2-4x+1=0.
(1)求y-x的最大值和最小值;
(2)求x2+y2的最最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的一个顶点为A(0,-1),焦点在x轴上,离心率为
6
3

(1)求椭圆的方程;
(2)设椭圆与直线y=kx+2(k≠0)相交于不同的两点M、N,当|MN|=
3
时,求k的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方形ABCD中,AB=4,BC=1,E为DC的四等分点(靠近C处),F为线段EC上一动点(包括端点),现将△AFD沿AF折起,使D点在平面内的射影恰好落在边AB上,则当F运动时,二面角D-AF-B的平面角余弦值的变化范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是偶函数,在[0,+∞)递增,f(x+1)=f(
x+1
x
)的所有实根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=logax的反函数的图象过点(4,4),则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若(1-2x)8=a0+a1x+a2x2+…a8x8(x∈R),则(a0+a1)+(a0+a2)+…(a0+a8)=
 

查看答案和解析>>

同步练习册答案