精英家教网 > 高中数学 > 题目详情
若(1-2x)8=a0+a1x+a2x2+…a8x8(x∈R),则(a0+a1)+(a0+a2)+…(a0+a8)=
 
考点:二项式系数的性质
专题:二项式定理
分析:由题意可得a0=1,在所给的等式中,令x=1,可得 a0+a1+a2+…a8 =1,故a1+a2+…a8 =0,从而求得(a0+a1)+(a0+a2)+…(a0+a8)=8a0+a1+a2+…a8 的值.
解答: 解:∵(1-2x)8=a0+a1x+a2x2+…a8x8(x∈R),∴a0=1,
令x=1,可得 a0+a1+a2+…a8 =1,∴a1+a2+…a8 =0,
∴(a0+a1)+(a0+a2)+…(a0+a8)=8a0+a1+a2+…a8 =8+0=8,
故答案为:8.
点评:本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知非零向量
e1
e2
不共线,如果
AB
=
e1
+
e2
AC
=2
e1
+8
e2
AD
=3
e1
-3
e2
,求证:A、B、C、D共面.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列判断中正确的是(  )
A、?m∈R使f(x)=(m-1)x m2-4m+3是幂函数,且在(0,+∞)上递减
B、“
1
a
+
1
b
=4”的必要不充分条件是“a=b=
1
2
C、命题“若a+
1
a
=2,则a=1”的逆否命题是“若a=1则a+
1
a
≠2”
D、命题“?a∈R,a2+1≥2a”的否定是:“?a∈R,a2+1≤2a”

查看答案和解析>>

科目:高中数学 来源: 题型:

由点P(2,3)向圆x2+y2=9引切线,则切线长为(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间四点A、B、C、D每两点的连线都相等于a,动点P在线段AB上,动点Q在线段CD上,则点P与Q的最小距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①非零向量
a
b
满足|
a
+
b
|=|
a
-
b
|,则
a
b
的夹角为90°;
a
b
>0是向量
a
b
的夹角为锐角的充要条件;
③将函数y=sin(2x-
π
3
)的图象按向量
a
=(-
π
6
,0)平移,得到的图象对应的函数表达式为y=sin2x.
其中正确的命题编号是(  )
A、②③B、①②C、①③D、①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-2x3+ax,若对于区间(1,2)内任意两个不等的实数p,q,不等式
f(p)-f(q)
p-q
>0恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠ACB=90°,AC=BC=2,点P是AB上的一个三等分点,则
CP
CB
+
CP
CA
=(  )
A、4B、1C、0D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若3≤a4≤6,4≤a5≤8,则S5的取值范围是
 

查看答案和解析>>

同步练习册答案