精英家教网 > 高中数学 > 题目详情
18.已知cos(α+β)=$\frac{5}{13}$,cosβ=$\frac{4}{5}$,且α、β均为锐角,则cosα=$\frac{56}{65}$.

分析 利用同角三角函数基本关系式,结合两角和与差的三角函数化简求解即可.

解答 解:cos(α+β)=$\frac{5}{13}$,cosβ=$\frac{4}{5}$,且α、β均为锐角,
可得sin(α+β)=$\frac{12}{13}$,sinβ=$\frac{3}{5}$.
cosα=cos[(α+β)-β]=cos(α+β)cosβ+sin(α+β)sinβ=$\frac{5}{13}×\frac{4}{5}$+$\frac{12}{13}×\frac{3}{5}$=$\frac{56}{65}$.
故答案为:$\frac{56}{65}$.

点评 本题考查同角三角函数基本关系式以及两角和与差的三角函数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.现有五个球分别记为A,B,C,D,E,随机放进三个盒子,每个盒子不空,则A、B在同一盒中的概率是(  )
A.$\frac{6}{25}$B.$\frac{11}{25}$C.$\frac{4}{15}$D.$\frac{6}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.圆(x-1)2+(y+1)2=2与圆x2+y2=1的公共弦所在直线方程为2x-2y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|ax2-2x+1|,x∈[0,4].
(1)当a<0时,求f(x)≥$\frac{1}{2}$的解集;
(2)求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=log2$\frac{x+1}{x-1}$+log2(x-1)+log2(p-x)(p>1),请求出它的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将函数f(x)=sin2x图象向右平移φ(φ>0)个单位得到函数g(x)的图象,若对任意的x∈R有g(x)+g($\frac{π}{3}$)≥0,则φ的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知命题p:{x||x-1|<c(c>0)},命题q:{x||x-3|>4},且¬p是q成立的充分且不必要条件,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知α,β,λ是一个三角形的三个内角,有下列式子:
①sin(α+β)-sinλ
②cos(α+β)+cosλ
③cos(α+β)-cosλ
④tan(α+β)-tanλ
⑤tan(α+β)+tanλ
⑥tan$\frac{α+β}{2}$tan$\frac{λ}{2}$.
其中,值为常数的式子的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右顶点、左焦点分别为A、F,点B(0,-b),若|$\overrightarrow{BA}+\overrightarrow{BF}|=|\overrightarrow{BA}-\overrightarrow{BF|}$,则双曲线的离心率值为$\frac{{\sqrt{5}+1}}{2}$.

查看答案和解析>>

同步练习册答案