精英家教网 > 高中数学 > 题目详情
5.若数列a,1,b,7是等差数列,则$\frac{b}{a}$=-2.

分析 数列a,1,b,7是等差数列,可得2=a+b,2b=1+7,联立解出即可得出.

解答 解:∵数列a,1,b,7是等差数列,
∴2=a+b,2b=1+7,
解得b=4,a=-2.
∴$\frac{b}{a}$=-2.
故答案为:-2.

点评 本题考查了等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知椭圆的两个焦点是(-3,0),(3,0),且点(0,3)在椭圆上,则椭圆的标准方程是(  )
A.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{13}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{18}$=1D.$\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,PA=PD=AD=2BC=2,CD=$\sqrt{3}$,PB=$\sqrt{6}$,Q是AD的中点.
(1)求证:平面PAD⊥底面ABCD;
(2)求三棱锥C-PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若a,b,c为直角三角形的三边,c为斜边,则c2=a2+b2,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O-ABC中,S为顶点O所对面的面积,S1,S2,S3分别为侧面△AOB,△BOC,△COA的面积,OA,OB,OC三条两两垂直,则S与S1,S2,S3的关系为${s^2}=s_1^2+s_2^2+s_3^2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知cos(α+$\frac{π}{4}$)=$\frac{{\sqrt{5}}}{5}$,α∈(0,$\frac{π}{2}$),则sinα=$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=-$\frac{1}{3}$x2+2x,若数列{an}满足a1=1.an+1=f(an).
(1)求a2,a3的值;
(2)猜想an与3的大小关系,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等比数列{an}的各项均为正数,公比q≠1,设P=$\sqrt{{a}_{4}•{a}_{8}}$,Q=$\frac{{a}_{3}+{a}_{9}}{2}$,则P与Q的大小关系(  )
A.P>QB.P<QC.P=QD.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.甲,乙两人独立地破译1个密码,他们能破译密码的概率分别是$\frac{1}{5}$和$\frac{1}{4}$,则这个密码能被破译的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知A={x|kx=1},B={x|x2=1},若A?B,求实数k的值.

查看答案和解析>>

同步练习册答案