精英家教网 > 高中数学 > 题目详情
15.已知椭圆的两个焦点是(-3,0),(3,0),且点(0,3)在椭圆上,则椭圆的标准方程是(  )
A.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{13}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{18}$=1D.$\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{9}$=1

分析 由已知可设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$,且得到c=3,b=3,利用隐含条件求得a,则椭圆方程可求.

解答 解:∵椭圆的两个焦点是(-3,0)、(3,0),
且过点(0,3),
∴设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$,
且c=3,b=3,解得a=$3\sqrt{2}$,
∴椭圆的标准方程为:$\frac{{x}^{2}}{18}+\frac{{y}^{2}}{9}=1$.
故选:D.

点评 本题考查椭圆的标准方程的求法,是基础题,解题时注意椭圆的简单性质的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若x∈(0,2π),则使$\sqrt{1-sin2x}$=sinx-cosx成立的x的取值范围是[$\frac{π}{4},\frac{5π}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前n项和为Sn,且对任意的n∈N*都有Sn=2an+n-4,
(1)求数列{an}的前三项a1,a2,a3
(2)猜想数列{an}的通项公式an,并用数学归纳法证明;
(3)求证:对任意n∈N*都有$\frac{1}{{a}_{2}-{a}_{1}}$+$\frac{1}{{a}_{3}-{a}_{2}}$+$\frac{1}{{a}_{4}-{a}_{3}}$+…+$\frac{1}{{a}_{n+1}-{a}_{n}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知焦点为F的抛物线C:y2=4x,点P(1,1),点A在抛物线C上,则|PA|+|AF|的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点M,N是抛物线y=4x2上不同的两点,F为抛物线的焦点,且满足∠MFN=135°,弦MN的中点P到直线l:y=-$\frac{1}{16}$的距离为d,若|MN|2=λ•d2,则λ的最小值为(  )
A.$\frac{\sqrt{2}}{2}$B.1-$\frac{\sqrt{2}}{2}$C.1+$\frac{\sqrt{2}}{2}$D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:6-3x≥0;命题q:$\frac{1}{x+1}$<0,若p∧(¬q)为真命题,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p:?x∈R,2x>x2,命题q:?x0∈R,x0-2>0,则下列命题中为真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知cosα=$\frac{5}{13}$,cos(α-β)=$\frac{4}{5}$,且0<β<α<$\frac{π}{2}$,
(1)求tan2α的值;  
(2)求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若数列a,1,b,7是等差数列,则$\frac{b}{a}$=-2.

查看答案和解析>>

同步练习册答案