精英家教网 > 高中数学 > 题目详情
4.已知cosα=$\frac{5}{13}$,cos(α-β)=$\frac{4}{5}$,且0<β<α<$\frac{π}{2}$,
(1)求tan2α的值;  
(2)求cosβ的值.

分析 (1)利用已知及同角三角函数基本关系式可求sinα,进而可求tanα,利用二倍角的正切函数公式可求tan2α的值.
(2)由0<β<α<$\frac{π}{2}$,得0<α-β<$\frac{π}{2}$,利用同角三角函数基本关系式可求sin(α-β),由β=α-(α-β)利用两角差的余弦函数公式即可计算求值.

解答 解:(1)∵由cosα=$\frac{5}{13}$,0<α<$\frac{π}{2}$,得sinα=$\sqrt{1-co{s}^{2}α}$=$\sqrt{1-(\frac{5}{13})^{2}}$=$\frac{12}{13}$,
∴得tan$α=\frac{sinα}{cosα}$=$\frac{12}{5}$
∴于是tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=-$\frac{120}{119}$.…(6分)
(2)由0<β<α<$\frac{π}{2}$,得0<α-β<$\frac{π}{2}$,
又∵cos(α-β)=$\frac{4}{5}$,
∴sin(α-β)=$\sqrt{1-co{s}^{2}(α-β)}$=$\frac{3}{5}$,
由β=α-(α-β)得:
cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=$\frac{5}{13}×\frac{4}{5}+\frac{3}{5}×\frac{12}{13}$=$\frac{56}{65}$.…(12分)

点评 本题主要考查了三角函数基本关系式,二倍角的正切函数公式,两角差的余弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知A(-2,0),B(2,0),|$\overrightarrow{AP}$|=2,D为线段BP的中点.
(1)求点D的轨迹E的方程;
(2)抛物线C以坐标原点为顶点,以轨迹E与x轴正半轴的交点F为焦点,过点B的直线与抛物线C交于M,N两点,试判断坐标原点与以MN为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆的两个焦点是(-3,0),(3,0),且点(0,3)在椭圆上,则椭圆的标准方程是(  )
A.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{13}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{18}$=1D.$\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在平面直角坐标系中,边长为an的一组正三角形AnBn-1Bn的底边Bn-1Bn依次排列在x轴上(B0与坐标原点重合).设{an}是首项为a,公差为2的等差数列,若所有正三角形顶点An在第一象限,且均落在抛物线y2=2px(p>0)上,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.关于函数f(x)=6sin(2x+$\frac{π}{3}$)(x∈R),有下列命题:
①由f(x1)=f(x2)=0可得x1-x2必是π的整数倍;
②y=f(x)的表达式可改写为f(x)=6cos(2x-$\frac{π}{6}$);
③y=f(x)的图象关于点(-$\frac{π}{6}$,0)对称;
④y=f(x)的图象关于直线x=$\frac{π}{12}$对称.
以上命题成立的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,∠ABC=∠DAB=$\frac{π}{2}$,AC与BD交于点O,AD=6,AB=2$\sqrt{3}$,BC=2.Q为PA上一点.
(I)求证:面PAC⊥面BDQ;
(Ⅱ)若PC∥平面BDQ,且PA=6,求三棱锥P-BDQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,PA=PD=AD=2BC=2,CD=$\sqrt{3}$,PB=$\sqrt{6}$,Q是AD的中点.
(1)求证:平面PAD⊥底面ABCD;
(2)求三棱锥C-PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若a,b,c为直角三角形的三边,c为斜边,则c2=a2+b2,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O-ABC中,S为顶点O所对面的面积,S1,S2,S3分别为侧面△AOB,△BOC,△COA的面积,OA,OB,OC三条两两垂直,则S与S1,S2,S3的关系为${s^2}=s_1^2+s_2^2+s_3^2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.甲,乙两人独立地破译1个密码,他们能破译密码的概率分别是$\frac{1}{5}$和$\frac{1}{4}$,则这个密码能被破译的概率为$\frac{2}{5}$.

查看答案和解析>>

同步练习册答案