精英家教网 > 高中数学 > 题目详情
9.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,∠ABC=∠DAB=$\frac{π}{2}$,AC与BD交于点O,AD=6,AB=2$\sqrt{3}$,BC=2.Q为PA上一点.
(I)求证:面PAC⊥面BDQ;
(Ⅱ)若PC∥平面BDQ,且PA=6,求三棱锥P-BDQ的体积.

分析 (Ⅰ)由PA⊥底面ABCD,得PA⊥BD,求解直角三角形得CO2+OB2=BC2,则BD⊥AC,再由线面垂直的判定与面面垂直的判定得面BDQ⊥面PAC;
(Ⅱ)连接OQ,由PC∥面BDQ,得PC∥OQ,由平行线截线段成比例可得$AQ=\frac{9}{2}$,$PQ=\frac{3}{2}$,再由VP-BDQ=VP-ABD-VQ-ABD求得三棱锥P-BDQ的体积.

解答 证明:(Ⅰ)∵PA⊥底面ABCD,
∴PA⊥BD,…(1分)
∵∠ABC=∠DAB=$\frac{π}{2}$,AD=6,AB=2$\sqrt{3}$,BC=2,
∴AC=4,BD=$4\sqrt{3}$,
在△COB中,
∵CO=$\frac{1}{4}AC=1$,$BO=\frac{1}{4}BD=\sqrt{3}$,
∴CO2+OB2=BC2,则BD⊥AC,…(4分)
∴BD⊥面PAC,BD?面BDQ,
∴面BDQ⊥面PAC;…(6分)
解:(Ⅱ)连接OQ,
∵PC∥面BDQ,面BDQ∩面PCA=OQ,
∴PC∥OQ,…(9分)
∴$\frac{AQ}{PQ}=\frac{AO}{OC}=\frac{3}{1}$,则$AQ=\frac{9}{2}$,$PQ=\frac{3}{2}$,…(10分)
∴VP-BDQ=VP-ABD-VQ-ABD=$\frac{1}{3}{S}_{△ABD}•(AP-AQ)=\frac{1}{3}{S}_{△ABD}•PQ=3\sqrt{3}$.
…(12分)

点评 本题考查面面垂直的判断,训练了利用等积法求三棱锥的体积,考查空间想象能力和思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的离心率e与其渐近线的斜率k满足e=$\sqrt{2}$|k|,则该双曲线的渐近线方程为(  )
A.y=±xB.y=±$\frac{\sqrt{2}}{2}$xC.y=±$\frac{1}{2}$xD.y=±$\sqrt{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:6-3x≥0;命题q:$\frac{1}{x+1}$<0,若p∧(¬q)为真命题,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将300°化为弧度为(  )
A.$\frac{4π}{3}$B.$\frac{7π}{6}$C.$\frac{5π}{3}$D.$\frac{7π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知cosα=$\frac{5}{13}$,cos(α-β)=$\frac{4}{5}$,且0<β<α<$\frac{π}{2}$,
(1)求tan2α的值;  
(2)求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.经过双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点F作该双曲线一条渐近线的垂线与两条渐近线相交于M,N两点,若|MN|=$\frac{4a}{3}$,则该双曲线的离心率是(  )
A.2或 $\frac{{2\sqrt{3}}}{3}$B.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个直立在水平面上的圆柱正视图、侧视图、俯视图分别是(  )
A.矩形、矩形、圆B.矩形、圆、矩形C.圆、矩形、矩形D.矩形、矩形、矩形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1上一点P到其中一个焦点的距离是3,则到另一个焦点的距离是(  )
A.5B.11C.3D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在三角形ABC中,a,b,c分别为角A、B、C的对边,
(Ⅰ)若sin(B+C)-$\sqrt{3}$cosA=0,求角A的大小;
(Ⅱ)若A=$\frac{π}{3}$,a=$\sqrt{3}$,b=2,求三角形ABC的面积.

查看答案和解析>>

同步练习册答案