精英家教网 > 高中数学 > 题目详情
19.在三角形ABC中,a,b,c分别为角A、B、C的对边,
(Ⅰ)若sin(B+C)-$\sqrt{3}$cosA=0,求角A的大小;
(Ⅱ)若A=$\frac{π}{3}$,a=$\sqrt{3}$,b=2,求三角形ABC的面积.

分析 (Ⅰ)利用三角形内角和定理,同角三角函数基本关系式可求tanA=$\sqrt{3}$,结合范围A∈(0,π),即可得解A的值.
(Ⅱ)由已知及正弦定理可求sinB=1结合范围B∈(0,π)可得B=$\frac{π}{2}$,进而可求c的值,利用三角形面积公式即可计算得解.

解答 (本题满分为12分)
解:(Ⅰ)因为:sin(B+C)-$\sqrt{3}$cosA=0,
又因为:sin(B+C)=sinA,-----(2分)
所以:tanA=$\sqrt{3}$.------(4分)
又因为:A∈(0,π),
所以:A=$\frac{π}{3}$.------(6分)
(Ⅱ)因为:A=$\frac{π}{3}$,a=$\sqrt{3}$,b=2,
所以:由正弦定理得:sinB=$\frac{bsinA}{a}$=1,B∈(0,π),可得:B=$\frac{π}{2}$,------(9分)
所以:c=1.------(10分)
所以:S△ABC=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{2}$.------(12分)

点评 本小题主要考查三角形内角和定理,正弦定理,三角形面积公式的应用,考查了三角形的边角关系等基础知识的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,∠ABC=∠DAB=$\frac{π}{2}$,AC与BD交于点O,AD=6,AB=2$\sqrt{3}$,BC=2.Q为PA上一点.
(I)求证:面PAC⊥面BDQ;
(Ⅱ)若PC∥平面BDQ,且PA=6,求三棱锥P-BDQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=-$\frac{1}{3}$x2+2x,若数列{an}满足a1=1.an+1=f(an).
(1)求a2,a3的值;
(2)猜想an与3的大小关系,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的中心在原点O,焦点在x轴上,且焦距等于短轴长,设不过原点的直线l与椭圆C交于M、N两点,满足直线OM、MN、ON的斜率依次成等比数列.
(1)求椭圆C的离心率;
(2)若椭圆C过点(2,0),求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.甲,乙两人独立地破译1个密码,他们能破译密码的概率分别是$\frac{1}{5}$和$\frac{1}{4}$,则这个密码能被破译的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为2c,以右顶点为圆心,以c为半径的圆与双曲线右支的交点横坐标为$\frac{3}{2}$a,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{6}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.10个人排成前后两排,每排5个人,则不同排法的种数是(  )
A.2A${\;}_{10}^{5}$B.2A${\;}_{5}^{5}$C.A${\;}_{10}^{5}$+A${\;}_{10}^{5}$D.A${\;}_{10}^{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知关于x的方程x2-tx+2-t=0,根据下列条件,求出实数t的取值范围.
(1)两个根都大于1;
(2)一个根大于1,另一个根小于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若定义在R上的奇函数f(x)满足:?x1,x2∈R,且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}>0$,则称该函数为满足约束条件K的一个“K函数”.有下列函数:①f(x)=x+1;②f(x)=-x3;③f(x)=$\frac{1}{x}$;④f(x)=x|x|.其中为“K函数”的是.
A.B.C.D.

查看答案和解析>>

同步练习册答案