精英家教网 > 高中数学 > 题目详情
17.将300°化为弧度为(  )
A.$\frac{4π}{3}$B.$\frac{7π}{6}$C.$\frac{5π}{3}$D.$\frac{7π}{4}$

分析 由180°=π得到1$°=\frac{π}{180}$,则答案可求.

解答 解:∵180°=π,
∴1$°=\frac{π}{180}$,
则300°=300×$\frac{π}{180}$=$\frac{5π}{3}$.
故选:C.

点评 本题考查角度制与弧度制的互化,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax2-2x-2lnx.
(1)若x=1是函数f(x)的极值点,求实数a的值;
(2)若F(x)=f($\sqrt{x}$)+2lnx存在两个极值点x1,x2(x1≠x2),证明:|F(x1)+F(x2)|≥$\frac{{e}^{2}-2}{{e}^{2}}$$\sqrt{{x}_{1}{x}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=$\sqrt{3}$x,焦点到渐近线的距离为$\sqrt{3}$.
(1)求双曲线的标准方程;
(2)直线l:y=kx与双曲线左、右两支分别交于A,B两点,直线l′:y=-$\frac{1}{k}$x与双曲线左支交于C点,求三角形ABC面积的最小值及取最小值时k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在同一平面直角坐标系中,求满足下列图形变换的伸缩变换:曲线4x2+9y2=36变成曲线 x′2+y′2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在平面直角坐标系中,边长为an的一组正三角形AnBn-1Bn的底边Bn-1Bn依次排列在x轴上(B0与坐标原点重合).设{an}是首项为a,公差为2的等差数列,若所有正三角形顶点An在第一象限,且均落在抛物线y2=2px(p>0)上,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在直角坐标系中,直线3x+$\sqrt{3}$y-3=0的倾斜角是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,∠ABC=∠DAB=$\frac{π}{2}$,AC与BD交于点O,AD=6,AB=2$\sqrt{3}$,BC=2.Q为PA上一点.
(I)求证:面PAC⊥面BDQ;
(Ⅱ)若PC∥平面BDQ,且PA=6,求三棱锥P-BDQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算:
(1)$\frac{\sqrt{1-2sin10°cos10°}}{sin10°-\sqrt{1-si{n}^{2}10°}}$;
(2)tan110°cos10°(1-$\sqrt{3}$tan20°).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的中心在原点O,焦点在x轴上,且焦距等于短轴长,设不过原点的直线l与椭圆C交于M、N两点,满足直线OM、MN、ON的斜率依次成等比数列.
(1)求椭圆C的离心率;
(2)若椭圆C过点(2,0),求△OMN面积的最大值.

查看答案和解析>>

同步练习册答案