精英家教网 > 高中数学 > 题目详情
19.关于函数f(x)=6sin(2x+$\frac{π}{3}$)(x∈R),有下列命题:
①由f(x1)=f(x2)=0可得x1-x2必是π的整数倍;
②y=f(x)的表达式可改写为f(x)=6cos(2x-$\frac{π}{6}$);
③y=f(x)的图象关于点(-$\frac{π}{6}$,0)对称;
④y=f(x)的图象关于直线x=$\frac{π}{12}$对称.
以上命题成立的序号是②③④.

分析 利用正弦函数的图象的周期性、对称性,诱导公式,得出结论.

解答 解:关于函数f(x)=6sin(2x+$\frac{π}{3}$)(x∈R),
由f(x1)=f(x2)=0可得 2x1+$\frac{π}{3}$=kπ,2x2+$\frac{π}{3}$=nπ,k、n∈Z,
不妨令 x1=$\frac{π}{3}$,x2,=$\frac{5π}{6}$,显然,x1-x2不是π的整数倍,故①错误.
∵y=f(x)=6sin(2x+$\frac{π}{3}$)=6cos[$\frac{π}{2}$-(2x+$\frac{π}{3}$)]=6cos(2x-$\frac{π}{6}$),故②正确.
令x=-$\frac{π}{6}$,求得f(x)=0,故f(x)的图象关于点(-$\frac{π}{6}$,0)对称,故③正确.
令x=$\frac{π}{12}$,可得f(x)=1,故f(x)的图象关于直线x=$\frac{π}{12}$对称,故④正确,
故答案为:②③④.

点评 本议题主要考查正弦函数的图象的周期性、对称性,诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.平面直角坐标系xOy中,已知圆x2+y2-2y=0,圆心F为抛物线y=$\frac{1}{2p}$x2的焦点,直线l经过点F与抛物线交于A,B两点,|AB|=5.
(I)求AB中点的纵坐标;
(Ⅱ)将圆F沿y轴向下平移一个单位得到圆N,过抛物线上一点M(2$\sqrt{2}$,m)作圆N的切线,切点分别为C,D,求直线CD的方程和△OCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点M,N是抛物线y=4x2上不同的两点,F为抛物线的焦点,且满足∠MFN=135°,弦MN的中点P到直线l:y=-$\frac{1}{16}$的距离为d,若|MN|2=λ•d2,则λ的最小值为(  )
A.$\frac{\sqrt{2}}{2}$B.1-$\frac{\sqrt{2}}{2}$C.1+$\frac{\sqrt{2}}{2}$D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p:?x∈R,2x>x2,命题q:?x0∈R,x0-2>0,则下列命题中为真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=xsinx+cosx的导数是(  )
A.y′=2sinx+xcosxB.y′=xcosxC.y′=xcosx-sinxD.y′=sinx+xcosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知cosα=$\frac{5}{13}$,cos(α-β)=$\frac{4}{5}$,且0<β<α<$\frac{π}{2}$,
(1)求tan2α的值;  
(2)求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线y2=-4x上的点P(-3,m)到焦点的距离等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在平面直角坐标中,经伸缩变换后曲线x2+y2=16变换为椭圆x′2+$\frac{y'}{16}^2}$=1,此伸缩变换公式是(  )
A.$\left\{{\begin{array}{l}{x=\frac{1}{4}x'}\\{y=y'}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x=4x'}\\{y=y'}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=2x'}\\{y=y'}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x=4x'}\\{y=8y'}\end{array}}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.复数$\frac{1}{{{{(1+i)}^2}}}$的虚部是$-\frac{1}{2}$.

查看答案和解析>>

同步练习册答案