精英家教网 > 高中数学 > 题目详情

【题目】垃圾分类是对垃圾进行有效处置的一种科学管理方法,为了了解居民对垃圾分类的知晓率和参与率,引导居民积极行动,科学地进行垃圾分类,某小区随机抽取年龄在区间[2585]上的50人进行调研,统计出年龄频数分布及了解垃圾分类的人数如表:

1)填写下面2x2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为以65岁为分界点居民对了解垃圾分类的有关知识有差异;

2)若对年龄在[4555),[2535)的被调研人中各随机选取2人进行深入调研,记选中的4人中不了解垃圾分类的人数为X,求随机变量X的分布列和数学期望.

参考公式和数据K2,其中na+b+c+d.

【答案】1)填表见解析;不能(2)分布列见解析;期望为

【解析】

1)根据题意填写列联表,计算观测值,对照临界值得出结论;

2)由题意知随机变量X的可能取值,计算对应的概率值,写出分布列,求出数学期望值.

解:(1)根据题意填写2x2列联表,

计算K26.2726.635

所以不能在犯错误的概率不超过0.01的前提下,认为以65岁为分界点居民对了解垃圾分类的有关知识有差异;

2)由题意知,随机变量X的可能取值为0123

计算PX0

PX1

PX2

PX3

所以随机变量X的分布列为:

所以X的数学期望为EX)=0123.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高中社团进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的称为“时尚族”,否则称为“非时尚族”,通过调查分别得到如图所示统计表和各年龄段人数频率分布直方图:

完成以下问题:

(Ⅰ)补全频率分布直方图并求nap的值;

(Ⅱ)从[40,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和期望E(X)..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性.

(2)试问是否存在,使得恒成立?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面的中点,上一点,且

1)求证:平面

2)若求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出停课不停学的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:

分数不少于120

分数不足120

合计

线上学习时间不少于5小时

4

19

线上学习时间不足5小时

合计

45

1)请完成上面列联表;并判断是否有99%的把握认为高三学生的数学成绩与学生线上学习时间有关

2)在上述样本中从分数不少于120分的学生中,按照分层抽样的方法,抽到线上学习时间不少于5小时和线上学习时间不足5小时的学生共5名,若在这5名学生中随机抽取2人,求至少1人每周线上学习时间不足5小时的概率.

(下面的临界值表供参考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式 其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),在圆锥内放两个大小不同且不相切的球,使得它们分别与圆锥的侧面、底面相切,用与两球都相切的平面截圆锥的侧面得到截口曲线是椭圆.理由如下:如图(2),若两个球分别与截面相切于点,在得到的截口曲线上任取一点,过点作圆锥母线,分别与两球相切于点,由球与圆的几何性质,得,所以,且,由椭圆定义知截口曲线是椭圆,切点为焦点.这个结论在圆柱中也适用,如图(3),在一个高为,底面半径为的圆柱体内放球,球与圆柱底面及侧面均相切.若一个平面与两个球均相切,则此平面截圆柱所得的截口曲线也为一个椭圆,则该椭圆的离心率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,四边形中,的中点.沿折起到的位置,如图②.

)求证:平面平面

)若,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|x+1||2x2|的最大值为M,正实数ab满足a+bM

1)求2a2+b2的最小值;

2)求证:aabbab

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面向量共线的充要条件是(

A.

B.两向量中至少有一个为零向量

C.λR

D.存在不全为零的实数λ1λ2

查看答案和解析>>

同步练习册答案