精英家教网 > 高中数学 > 题目详情

【题目】某高中社团进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的称为“时尚族”,否则称为“非时尚族”,通过调查分别得到如图所示统计表和各年龄段人数频率分布直方图:

完成以下问题:

(Ⅰ)补全频率分布直方图并求nap的值;

(Ⅱ)从[40,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和期望E(X)..

【答案】(1)直方图见解析,(2)分布列见解析,

【解析】

试题(Ⅰ)根据所求矩形的面积和为1求出第二组的频率,然后求出高,画出频率直方图,求出第一组的人数和频率从而求出n,由题可知,第二组的频率以及人数,从而求出p的值,然后求出第四组的频率和人数从而求出a的值;

(Ⅱ)因为[40,45)岁年龄段的“时尚族”与[45,50)岁年龄段的“时尚族”的比值为2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人,机变量X服从超几何分布,X的取值可能为0,1,2,3,分别求出相应的概率,列出分布列,根据数学期望公式求出期望即可.

试题解析:解:(Ⅰ)第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,

所以高为. 频率直方图如下:

第一组的人数为,频率为0.04×5=0.2,所以

由题可知,第二组的频率为0.3,所以第二组的人数为1000×0.3=300, 所以

第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150, 所以a=150×0.4=60.

(Ⅱ)因为[40,45)岁年龄段的“时尚族”与[45,50)岁年龄段的“时尚族”的比值

为60:30=2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人.

随机变量X服从超几何分布.

所以随机变量X的分布列为

X

0

1

2

3

P

∴数学期望 (或者 ).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,给出以下四个命题:①为偶函数;②为偶函数;③的最小值为0;④有两个零点.其中真命题的是( ).

A.②④B.①③C.①③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.其中表示直线,β表示平面,给出如下5个命题:

①若//,则//

②若,则

不垂直,则不可能成立;

④若,则

,则

其中真命题的个数是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),在以坐标原点为极点,以轴正半轴为极轴的极坐标中,圆的方程为

(1)写出直线的普通方程和圆的直角坐标方程;

(2)若点的坐标为,圆与直线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年,某省将实施新高考,年秋季入学的高一学生是新高考首批考生,新高考不再分文理科,采用模式,其中语文、数学、外语三科为必考科目,满分各分,另外,考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物门科目中自选门参加考试(),每科目满分.为了应对新高考,某高中从高一年级名学生(其中男生人,女生人)中,采用分层抽样的方法从中抽取n名学生进行调查.

1)已知抽取的n名学生中含女生人,求n的值及抽取到的男生人数;

2)学校计划在高一上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下面表格是根据调查结果得到的列联表,请将下面的列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;

选择“物理”

选择“历史”

总计

男生

10

女生

30

总计

3)在抽取到的名女生中,在(2)的条件下,按选择的科目进行分层抽样,抽出名女生,了解女生对“历史”的选课意向情况,在这名女生中再抽取人,求这人中选择“历史”的人数为人的概率.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆的离心率为,双曲线的渐近线与椭圆的交点到原点的距离均为.

1)求椭圆的标准方程;

2)若点为椭圆上的动点,三点共线,直线的斜率分别为.

i)证明:

ii)若,设直线过点,直线过点,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是以为直径的圆上的动点(异于),已知平面,四边形为平行四边形.

1)求证:平面

2)当三棱锥的体积最大时,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若过点的直线与曲线相切,求直线的斜率的值;

2)设,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】垃圾分类是对垃圾进行有效处置的一种科学管理方法,为了了解居民对垃圾分类的知晓率和参与率,引导居民积极行动,科学地进行垃圾分类,某小区随机抽取年龄在区间[2585]上的50人进行调研,统计出年龄频数分布及了解垃圾分类的人数如表:

1)填写下面2x2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为以65岁为分界点居民对了解垃圾分类的有关知识有差异;

2)若对年龄在[4555),[2535)的被调研人中各随机选取2人进行深入调研,记选中的4人中不了解垃圾分类的人数为X,求随机变量X的分布列和数学期望.

参考公式和数据K2,其中na+b+c+d.

查看答案和解析>>

同步练习册答案