精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=
S2
b2

(1)求an与bn
(2)设数列{cn}满足cn=
1
Sn
,{cn}的前n项和Tn,求证:Tn
2
3
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件得
q+3+a2=12
q=
3+a1
q
,解得q=3,a2=6,由此能求出an与bn
(2)由Sn=
n(3+3n)
2
,得cn=
1
Sn
=
2
n(3+3n)
=
2
3
(
1
n
-
1
n+1
)
,由此利用裂项求和法能证明Tn
2
3
解答: 解:(1)∵在等差数列{an}中,a1=3,其前n项和为Sn
等比数列{bn}的各项均为正数,b1=1,公比为q,
且b2+S2=12,q=
S2
b2

q+3+a2=12
q=
3+a1
q

解得q=3或q=-4(舍去),
∴a2=6,d=a2-a1=6-3=3,
∴an=3+(n-1)•3=3n
bn=3n-1
(2)∵Sn=
n(3+3n)
2

∴cn=
1
Sn
=
2
n(3+3n)
=
2
3
(
1
n
-
1
n+1
)

∴Tn=
2
3
(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)

=
2
3
(1-
1
n+1
)

∴Tn
2
3
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx+sin2x-
3
2
,将函数f(x)的图象向左平移
π
6
个单位,得到函数g(x)的图象,设△ABC得三个角A,B,C的对边分别是a,b,c
(1)若f(C)=0,c=
6
,2sinA=sinB,求a,b的值;
(2)若g(B)=0,且
m
=(cosA,cosB),
n
=(1,sinA-cosAtanB),求
m
n
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=1-
1
4an
,其中n∈N*
(1)设bn=
2
2an-1
,求证:数列{bn}是等差数列;
(2)若cn=6n+(-1)n-1λ•2 bn是否存在λ,使得对任意n∈N+,都有cn+1>cn,若存在,求出λ的取值范围;若不存在,说明理由;
(3)证明::对一切正整数n,有
1
b1(b1+1)
+
1
b2(b2+1)
+…+
1
bn(bn+1)
13
42

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正四棱柱ABCD-A1B1C1D1中,已知底面ABCD边长为2,侧棱AA1=6.
(1)点P在侧棱AA1上,若AP=
1
3
,求证:平面PBD⊥平面C1BD;
(2)求几何体BA1C1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

观察以下各等式:
sin230°+cos260°+sin30°cos60°=
3
4

sin220°+cos250°+sin20°cos50°=
3
4

sin215°+cos245°+sin15°cos45°=
3
4

分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x3-12x.
(1)求函数f(x)的单调递增区间.
(2)求函数f(x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在含有3件次品的5件产品中,任取2件,试求:
(Ⅰ)取到的次品数X的分布列;
(Ⅱ)至多有1件次品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2+bx的图象为曲线E.
(1)若a=3,b=-9,求函数f(x)的极值;
(2)若曲线E上存在点P,使曲线E在P点处的切线与x轴平行,求a,b的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=(
1
2
x+xln2的单调增区间为
 

查看答案和解析>>

同步练习册答案