已知抛物线y2=8x的准线过双曲线
-
=1(a>0,b>0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为 .
科目:高中数学 来源: 题型:
已知A、B分别为椭圆
+
=1(a>b>0)的左、右顶点,C(0,b),直线l:x=2a与x轴交于点D,与直线AC交于点P,若∠DBP=
,则此椭圆的离心率为( )
(A)
(B)
(C)
(D)![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
在平面直角坐标系xOy中,已知椭圆C1:
+
=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知双曲线C1:
-
=1(a>0,b>0)的离心率为2.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为( )
(A)x2=
y (B)x2=
y
(C)x2=8y (D)x2=16y
查看答案和解析>>
科目:高中数学 来源: 题型:
如图所示,设P是抛物线C1:x2=y上的动点,过点P作圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A、B两点.
![]()
(1)求圆C2的圆心M到抛物线C1准线的距离;
(2)是否存在点P,使线段AB被抛物线C1在点P处的切线平分?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
点A是抛物线C1:y2=2px(p>0)与双曲线C2:
-
=1(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于( )
(A)
(B)
(C)
(D)![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为
,得到黑球或黄球的概率是
,得到黄球或绿球的概率是
,试求得到黑球、黄球、绿球的概率各是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com