精英家教网 > 高中数学 > 题目详情
已知M是曲线y=ln x+x2+(1-a)x上的一点,若曲线在M处的切线的倾斜角是均不小于的锐角,则实数a的取值范围是________.
(-∞,2]

试题分析:,因为曲线在M处的切线的倾斜角是均不小于的锐角,所以对于任意的恒成立,即恒成立,所以,而,故,所以a的取值范围是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若的解集是,求的值;
(2)若,解关于的不等式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.
(1)当时判断的单调性;
(2)若在其定义域为增函数,求正实数的取值范围;
(3)设函数,当时,若,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图像过原点,且在处的切线为直线
(Ⅰ)求函数的解析式;
(Ⅱ)求函数在区间上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数上的减函数.
(Ⅰ)求曲线在点(1,f(1))处的切线方程;
(Ⅱ)若上恒成立,求的取值范围;
(Ⅲ)关于的方程()有两个根(无理数e=2.71828),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数若函数在x = 0处取得极值.
(1) 求实数的值;
(2) 若关于x的方程在区间[0,2]上恰有两个不同的实数根,求实数的取值范围;
(3)证明:对任意的正整数n,不等式都成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

记定义在R上的函数的导函数为.如果存在,使得成立,则称为函数在区间上的“中值点”.那么函数 在区间[-2,2]上的“中值点”为____

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数,对任意,恒有,其中M是常数,则M的最小值是              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为三次函数的导函数,则函数的图像可能是(    )

查看答案和解析>>

同步练习册答案