精英家教网 > 高中数学 > 题目详情

若过点P(1,1)且互相垂直的两条直线l1,l2分别与x轴,y轴交于A,B两点,则AB中点M的轨迹方程为________.

 

x+y-1=0

【解析】设直线l1的方程是y-1=k(x-1),则直线l2的方程是y-1=- (x-1),所以直线l1与x轴的交点为A(1-,0),l2与y轴的交点为B(0,1+),设AB的中点为M(x,y),则有,两式相加消去k得x+y=1,

即x+y-1=0,所以AB中点M的轨迹方程为x+y-1=0.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:选4-1-1相似三角形判定及性质(解析版) 题型:解答题

如图,△ABC中,AB=AC,AD是中线,P为AD上一点,CF∥AB,BP延长线交AC、CF于E、F,求证:PB2=PE·PF.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:9-1随机抽样(解析版) 题型:解答题

某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.

(1)求应从小学、中学、大学中分别抽取的学校数目;

(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,

①列出所有可能的抽取结果;

②求抽取的2所学校均为小学的概率.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-9圆锥曲线的综合问题(解析版) 题型:解答题

已知△ABC的周长为12,顶点A,B的坐标分别为(-2,0),(2,0),C为动点.

(1)求动点C的轨迹E的方程;

(2)过原点作两条关于y轴对称的直线(不与坐标轴重合),使它们分别与曲线E交于两点,求四点所对应的四边形的面积的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-9圆锥曲线的综合问题(解析版) 题型:选择题

设抛物线x2=4y与椭圆=1交于点E,F,则△OEF(O为坐标原点)的面积为(  )

A.3 B.4 C.6 D.12

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-8曲线与方程(解析版) 题型:填空题

曲线C是平面内与两个定点F1(-1,0)和F2(1,0)的距离的积等于常数a2(a>1)的点的轨迹.给出下列三个结论:

①曲线C过坐标原点;

②曲线C关于坐标原点对称;

③若点P在曲线C上,则△F1PF2的面积不大于a2.

其中,所有正确结论的序号是________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-8曲线与方程(解析版) 题型:选择题

长为3的线段AB的端点A、B分别在x轴、y轴上移动,=2,则点C的轨迹是(  )

A.线段 B.圆 C.椭圆 D.双曲线

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-6双曲线(解析版) 题型:解答题

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).

(1)求双曲线C的方程;

(2)若直线l:y=kx+与双曲线C恒有两个不同的交点A和B,且·>2(其中O为原点),求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-4直线与圆、圆与圆的位置关系(解析版) 题型:选择题

已知圆C:x2+(y-3)2=4,过A(-1,0)的直线l与圆C相交于P,Q两点,若|PQ|=2,则直线l的方程为(  )

A.x=-1或4x+3y-4=0

B.x=-1或4x-3y+4=0

C.x=1或4x-3y+4=0

D.x=1或4x+3y-4=0

 

查看答案和解析>>

同步练习册答案