精英家教网 > 高中数学 > 题目详情
7.已知a,b,c为正数,且a+b+c=1
(Ⅰ)求$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$的最小值;
(Ⅱ)求证:$\frac{1}{1-a}$+$\frac{1}{1-b}$+$\frac{1}{1-c}$≥$\frac{2}{1+a}$+$\frac{2}{1+b}$+$\frac{2}{1+c}$.

分析 (Ⅰ)a,b,c为正数,且a+b+c=1,运用乘1法,结合三元均值不等式,即可得到所求最小值;
(Ⅱ)由a,b,c为正数,且a+b+c=1,将不等式右边中的“1”代换,可得2($\frac{1}{(a+b)+(a+c)}$+$\frac{1}{(b+a)+(b+c)}$+$\frac{1}{(c+a)+(c+b)}$),再由二元均值不等式即可得证.

解答 解:(Ⅰ)a,b,c为正数,且a+b+c=1,
由均值不等式可得,$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$=(a+b+c)($\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$)
≥3$\root{3}{abc}$•3$\root{3}{\frac{1}{abc}}$=9,
当且仅当a=b=c=$\frac{1}{3}$ 时取得最小值9;
(Ⅱ)证明:由a,b,c为正数,且a+b+c=1,
可得$\frac{2}{1+a}$+$\frac{2}{1+b}$+$\frac{2}{1+c}$=2($\frac{1}{1+a}$+$\frac{1}{1+b}$+$\frac{1}{1+c}$)
=2($\frac{1}{(a+b)+(a+c)}$+$\frac{1}{(b+a)+(b+c)}$+$\frac{1}{(c+a)+(c+b)}$)
≤$\frac{1}{\sqrt{(a+b)(a+c)}}$+$\frac{1}{\sqrt{(b+a)(b+c)}}$+$\frac{1}{\sqrt{(c+a)(c+b)}}$
≤$\frac{1}{2}$($\frac{1}{a+b}$+$\frac{1}{a+c}$)+$\frac{1}{2}$($\frac{1}{b+a}$+$\frac{1}{b+c}$)+$\frac{1}{2}$($\frac{1}{c+a}$+$\frac{1}{c+b}$)
=$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{a+c}$=$\frac{1}{1-a}$+$\frac{1}{1-b}$+$\frac{1}{1-c}$.
故原不等式成立.

点评 本题考查最值的求法和不等式的证明,注意运用均值不等式和不等式的性质,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设a∈R,b∈[0,2π),若对任意实数x都有sin(3x-$\frac{π}{3}$)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=|x-m|+|x+m|,x∈R.记不等式f(2)>5的解集为M.
(1)若m0∈M,求m02+$\frac{64}{{{m}_{0}}^{2}+1}$的最小值;
(2)若a,b∈M,证明:16a2b2+625>100a2+100b2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求曲线$\left\{\begin{array}{l}{x=2\sqrt{3}cosθ}\\{y=3\sqrt{2}sinθ}\end{array}\right.$(θ为参数)中两焦点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.把下列参数方程化成普通方程,其中t是参数:
(1)$\left\{\begin{array}{l}{x={x}_{1}+at}\\{y={y}_{1}+bt}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(p>0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1],若a,b,c∈R+时,$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$=m.
(1)求证:a+2b+3c≥9;
(2)求证:$\frac{1}{ab}$+$\frac{2}{3ac}$+$\frac{1}{3bc}$≤$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在平面直角坐标系xOy,设点M(x0,y0)是椭圆C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1上一点,从原点O向圆M:(x-x02+(y-y02=r2作两条切线分别与椭圆C交于点P、Q,直线OP,OQ的斜率分别记为k1,k2
(1)若圆M与x轴相切于椭圆C的左焦点,求圆M的方程;
(2)若r=$\frac{4\sqrt{5}}{5}$,
①求证:k1k2为定值;
②求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点M(-3,0),N(3,0),B(2,0),动圆C与直线MN切于点B,过M,N与圆C相切的两直线交于点P,则P的轨迹方程为(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x<-2)B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x>2)C.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1(x>0)D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x>0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设随机变量X的分布列为P(X=i)=a($\frac{1}{2}$)i,i=1,2,3,4,则实数a的值为(  )
A.1B.$\frac{8}{15}$C.$\frac{16}{15}$D.$\frac{8}{7}$

查看答案和解析>>

同步练习册答案