精英家教网 > 高中数学 > 题目详情
11.△ABC的内角A、B、C的对边分别为a、b、c,已知B=2C,2b=3c.
(1)求cosC;
(2)若c=4,求△ABC的面积.

分析 (1)由题意和正弦定理列出方程后,由二倍角的正弦公式化简后求出cosC;
(2)由条件求出b,由内角的范围和平方关系求出sinC,由余弦定理列出方程化简后求出a,代入三角形的面积公式求出△ABC的面积.

解答 解:(1)∵B=2C,2b=3c,
∴由正弦定理得,$\frac{b}{sinB}=\frac{c}{sinC}$,
则$\frac{b}{2sinCcosC}=\frac{c}{sinC}$,即cosC=$\frac{b}{2c}$=$\frac{3}{4}$;
(2)∵2b=3c,且c=4,∴b=6,
∵0<C<π,cosC=$\frac{3}{4}$,
∴sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{\sqrt{7}}{4}$,
由余弦定理得,c2=a2+b2-2abcosC,
则$16={a}^{2}+36-2a×6×\frac{3}{4}$,
即a2-9a+20=0,解得a=4或a=5,
当a=4时,△ABC的面积S=$\frac{1}{2}absinC$=$\frac{1}{2}×4×6×\frac{\sqrt{7}}{4}$=$3\sqrt{7}$,
当a=5时,△ABC的面积S=$\frac{1}{2}absinC$=$\frac{1}{2}×5×6×\frac{\sqrt{7}}{4}$=$\frac{15\sqrt{7}}{4}$.

点评 本题考查正弦定理、余弦定理,三角形的面积公式,以及二倍角的正弦公式等的应用,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(3,4),若λ$\overrightarrow{a}$=(3λ,2μ)(λ,μ∈R),且|λ$\overrightarrow{a}$|=5,则λ+μ=(  )
A.3B.-3C.±3D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax,g(x)=lnx,(a∈R)
(1)当a=1时,求函数y=$\frac{g(x)}{f(x)}$在点(1,0)处的切线方程;
(2)若在[1,+∞)上不等式xf(x-1)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则{an}的公比为(  )
A.2B.3C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线C的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),若C的右支上存在两点A、B,使∠AOB=120°,其中O为坐标原点,则曲线C的离心率的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.先把函数y=sin(x+φ)的图象上个点的横坐标缩短为原来的$\frac{1}{2}$(纵坐标不变),再向右平移$\frac{π}{3}$个单位,所得函数关于y轴对称,则φ的值可以是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$-\frac{π}{6}$D.$-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若ln(x+1)-1≤ax+b对任意x>-1的恒成立,则$\frac{b}{a}$的最小值是1-e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=cos2x+2sin2x+2sinx.
(Ⅰ)将函数f(2x)的图象向右平移$\frac{π}{6}$个单位得到函数g(x)的图象,若x∈[-$\frac{π}{12}$,$\frac{π}{12}$],求函数g(x)的值域;
(Ⅱ)已知a,b,c分别为△ABC中角A,B,C的对边,且满足f(A)=$\sqrt{3}$+1,A∈(0,$\frac{π}{2}$),a=2$\sqrt{3}$,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2-2ax+4
(1)求函数y=f(x),x∈[0,2]的最小值
(2)若对任意x1,x2∈[0,2],都有|f(x1)-f(x2)|<4恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案