精英家教网 > 高中数学 > 题目详情
19.等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则{an}的公比为(  )
A.2B.3C.$\frac{1}{2}$D.$\frac{1}{3}$

分析 设等比数列{an}的公比为q,由S1,2S2,3S3成等差数列,可得S1+3S3=2×2S2,即a1+3(a1+a2+a3)=4(a1+a2),),化简即可得出.

解答 解:设等比数列{an}的公比为q,∵S1,2S2,3S3成等差数列,∴S1+3S3=2×2S2
∴a1+3(a1+a2+a3)=4(a1+a2),化为:3a3=a2,解得q=$\frac{1}{3}$.
故选:D.

点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.直线l的参数方程为$\left\{\begin{array}{l}x=2t-1\\ y=2t+1\end{array}\right.$(t为参数),圆C的圆心为C(0,1),且与x轴相切,若l与圆C交于A、B两点,则△ABC的面积为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在极坐标系(0≤θ≤2π)中,曲线ρsinθ=1与曲线ρ=2cosθ的交点的极坐标为($\sqrt{2}$,$\frac{π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.我们知道:在平面内,点(x0,y0)到直线Ax+By+C=0的距离公式为d=$\frac{|A{x}_{0}+B{y}_{0}+C|}{\sqrt{{A}^{2}+{B}^{2}}}$,通过类比的方法,可求得:在空间中,点(2,4,1)到平面x+2y+3z+3=0的距离为(  )
A.3B.5C.$\frac{8\sqrt{14}}{7}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,双曲线E的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{cosθ}}\\{y=tanθ}\end{array}\right.$(θ为参数),设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求直线l的极坐标方程;
(2)设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若曲线f(x)=$\sqrt{x}$在点(a,f(a))处的切线与两坐标轴围成的图形的面积为$\frac{1}{4}$,则a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.△ABC的内角A、B、C的对边分别为a、b、c,已知B=2C,2b=3c.
(1)求cosC;
(2)若c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设全集U=R,集合A={x|x>1},集合B={x|x>p},若(∁UA)∩B=∅,则p应该满足的条件是(  )
A.p>1B.p≥1C.p<1D.p≤1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}满足an+1+2=$\frac{3{a}_{n}+4}{2{a}_{n}+3}$,且a1=1,设bn=$\frac{{a}_{n}+1}{{2}_{\;}}$,则数列{bn•bn+1}的前50项和为$\frac{50}{201}$.

查看答案和解析>>

同步练习册答案