14£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ë«ÇúÏßEµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{cos¦È}}\\{y=tan¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÉèEµÄÓÒ½¹µãΪF£¬¾­¹ýµÚÒ»ÏóÏ޵Ľ¥½øÏßΪl£®ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóÖ±ÏßlµÄ¼«×ø±ê·½³Ì£»
£¨2£©Éè¹ýFÓël´¹Ö±µÄÖ±ÏßÓëyÖáÏཻÓÚµãA£¬PÊÇlÉÏÒìÓÚÔ­µãOµÄµã£¬µ±A£¬O£¬F£¬PËĵãÔÚͬһԲÉÏʱ£¬ÇóÕâ¸öÔ²µÄ¼«×ø±ê·½³Ì¼°µãPµÄ¼«×ø±ê£®

·ÖÎö £¨1£©ÓÉË«ÇúÏßEµÄ²ÎÊý·½³ÌÇó³öË«ÇúÏßEµÄÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{3}-{y}^{2}=1$£®´Ó¶øÇó³öÖ±ÏßlÔÚÖ±½Ç×ø±êϵÖеķ½³Ì£¬ÓÉ´ËÄÜÇó³ölµÄ¼«×ø±ê·½³Ì£®
£¨2£©ÓÉÌâÒâA¡¢O¡¢F¡¢PËĵ㹲ԲµÈ¼ÛÓÚPÊǵãA£¬O£¬FÈ·¶¨µÄÔ²£¨¼ÇΪԲC£¬CΪԲÐÄ£©ÓëÖ±ÏßlµÄ½»µã£¨ÒìÓÚÔ­µãO£©£¬Ïß¶ÎAFΪԲCµÄÖ±¾¶£¬AÊǹýFÓël´¹Ö±µÄÖ±ÏßÓëyÖáµÄ½»µã£¬´Ó¶øCµÄ°ë¾¶Îª2£¬Ô²Ðĵļ«×ø±êΪ£¨2£¬$\frac{¦Ð}{3}$£©£¬ÓÉ´ËÄÜÇó³öµãPµÄ¼«×ø±ê£®

½â´ð ½â£º£¨1£©¡ßË«ÇúÏßEµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{cos¦È}}\\{y=tan¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡à$\frac{{x}^{2}}{3}=\frac{1}{co{s}^{2}¦È}$£¬${y}^{2}=ta{n}^{2}¦È=\frac{si{n}^{2}¦È}{co{s}^{2}¦È}$£¬
¡à$\frac{{x}^{2}}{3}-{y}^{2}$=$\frac{1}{co{s}^{2}¦È}-\frac{si{n}^{2}¦È}{co{s}^{2}¦È}$=1£¬
¡àË«ÇúÏßEµÄÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{3}-{y}^{2}=1$£®
¡àÖ±ÏßlÔÚÖ±½Ç×ø±êϵÖеķ½³ÌΪy=$\frac{\sqrt{3}}{3}x$£¬Æä¹ýÔ­µã£¬Çãб½ÇΪ$\frac{¦Ð}{6}$£¬
¡àlµÄ¼«×ø±ê·½³ÌΪ$¦È=\frac{¦Ð}{6}$£®
£¨2£©ÓÉÌâÒâA¡¢O¡¢F¡¢PËĵ㹲ԲµÈ¼ÛÓÚPÊǵãA£¬O£¬FÈ·¶¨µÄÔ²£¨¼ÇΪԲC£¬CΪԲÐÄ£©ÓëÖ±ÏßlµÄ½»µã£¨ÒìÓÚÔ­µãO£©£¬
¡ßAO¡ÍOF£¬¡àÏß¶ÎAFΪԲCµÄÖ±¾¶£¬
ÓÉ£¨¢ñ£©Öª£¬|OF|=2£¬
ÓÖAÊǹýFÓël´¹Ö±µÄÖ±ÏßÓëyÖáµÄ½»µã£¬
¡à¡ÏAFO=$\frac{¦Ð}{3}$£¬|AF|=4£¬
ÓÚÊÇÔ²CµÄ°ë¾¶Îª2£¬Ô²Ðĵļ«×ø±êΪ£¨2£¬$\frac{¦Ð}{3}$£©£¬
¡àÔ²CµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=4cos£¨\frac{¦Ð}{3}-¦È£©$£¬
´Ëʱ£¬µãPµÄ¼«×ø±êΪ£¨4cos£¨$\frac{¦Ð}{3}-\frac{¦Ð}{6}$£©£¬$\frac{¦Ð}{6}$£©£¬¼´£¨2$\sqrt{3}$£¬$\frac{¦Ð}{6}$£©£®

µãÆÀ ±¾Ì⿼²éÖ±Ïߵļ«×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éµãµÄ¼«×ø±êµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³Ì»¥»¯¹«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÒÑÖªÖ±Ïßl¹ýµãP£¨2£¬0£©£¬Ð±ÂÊΪ$\frac{4}{3}$£¬Ö±ÏßlºÍÅ×ÎïÏßy2=2xÏཻÓÚA¡¢BÁ½µã£¬ÉèÏß¶ÎABµÄÖеãΪM£¬Çó£º
£¨1£©P¡¢MÁ½µã¼äµÄ¾àÀë|PM|£»
£¨2£©Ïß¶ÎABµÄ³¤|AB|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÉèSn ÊÇÊýÁÐ{an}µÄǰ n ÏîºÍ£¬Èô a1=1£¬an=Sn-1£¬£¨n¡Ý2£©£¬Ôòan=$\left\{\begin{array}{l}{1£¬n=1}\\{{2}^{n-2}£¬n¡Ý2}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=ax£¬g£¨x£©=lnx£¬£¨a¡ÊR£©
£¨1£©µ±a=1ʱ£¬Çóº¯Êýy=$\frac{g£¨x£©}{f£¨x£©}$Ôڵ㣨1£¬0£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©ÈôÔÚ[1£¬+¡Þ£©Éϲ»µÈʽxf£¨x-1£©¡Ýg£¨x£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄ·Ç¸º°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2t}\\{y=2t-1}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔòÖ±Ïßl±»ÇúÏßC½ØµÃµÄÏÒ³¤Îª$\sqrt{14}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®µÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÒÑÖªS1£¬2S2£¬3S3³ÉµÈ²îÊýÁУ¬Ôò{an}µÄ¹«±ÈΪ£¨¡¡¡¡£©
A£®2B£®3C£®$\frac{1}{2}$D£®$\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑ֪˫ÇúÏßCµÄ·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©£¬ÈôCµÄÓÒÖ§ÉÏ´æÔÚÁ½µãA¡¢B£¬Ê¹¡ÏAOB=120¡ã£¬ÆäÖÐOÎª×ø±êÔ­µã£¬ÔòÇúÏßCµÄÀëÐÄÂʵÄȡֵ·¶Î§ÊÇ£¨2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èôln£¨x+1£©-1¡Üax+b¶ÔÈÎÒâx£¾-1µÄºã³ÉÁ¢£¬Ôò$\frac{b}{a}$µÄ×îСֵÊÇ1-e£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒѺÍÃüÌâP£ºº¯Êýy=logaxÔÚ¶¨ÒåÓòÉϵ¥µ÷µÝ¼õ£»$Q£º\frac{a-2}{a+2}¡Ü0$£¬ÈôP¡ÅQÊǼÙÃüÌ⣬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸