精英家教网 > 高中数学 > 题目详情
18.已知数列{an}满足an+1+2=$\frac{3{a}_{n}+4}{2{a}_{n}+3}$,且a1=1,设bn=$\frac{{a}_{n}+1}{{2}_{\;}}$,则数列{bn•bn+1}的前50项和为$\frac{50}{201}$.

分析 数列{an}满足an+1+2=$\frac{3{a}_{n}+4}{2{a}_{n}+3}$,可得$\frac{1}{{a}_{n+1}+1}$=$\frac{2{a}_{n}+3}{{a}_{n}+1}$,化为:$\frac{1}{{a}_{n+1}+1}$-$\frac{1}{{a}_{n}+1}$=2,利用“裂项求和”方法即可得出.

解答 解:∵数列{an}满足an+1+2=$\frac{3{a}_{n}+4}{2{a}_{n}+3}$,
∴$\frac{1}{{a}_{n+1}+1}$=$\frac{2{a}_{n}+3}{{a}_{n}+1}$,化为:$\frac{1}{{a}_{n+1}+1}$-$\frac{1}{{a}_{n}+1}$=2,
∴数列{$\frac{1}{{a}_{n}+1}$}是以$\frac{1}{2}$为首项,2为公差的等差数列,
则$\frac{1}{{a}_{n}+1}$=2n-$\frac{3}{2}$,∴bn=$\frac{{a}_{n}+1}{2}$=$\frac{1}{4n-3}$,
则bn•bn+1=$\frac{1}{(4n-3)(4n+1)}$=$\frac{1}{4}({\frac{1}{4n-3}-\frac{1}{4n+1}})$,
∴${b_1}•{b_2}+…+{b_{50}}•{b_{51}}=\frac{1}{4}({1-\frac{1}{201}})=\frac{50}{201}$.
故答案为:$\frac{50}{201}$.

点评 本题考查了数列递推关系、等差数列与等比数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则{an}的公比为(  )
A.2B.3C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=cos2x+2sin2x+2sinx.
(Ⅰ)将函数f(2x)的图象向右平移$\frac{π}{6}$个单位得到函数g(x)的图象,若x∈[-$\frac{π}{12}$,$\frac{π}{12}$],求函数g(x)的值域;
(Ⅱ)已知a,b,c分别为△ABC中角A,B,C的对边,且满足f(A)=$\sqrt{3}$+1,A∈(0,$\frac{π}{2}$),a=2$\sqrt{3}$,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知二次函数f(x)=-x2+ax+b(a,b∈R),设M(a,b)是函数g(x)=|f(x)|在[1,2]上的最大值.
(1)当a=1时,求M(1,b)关于b的解析式;
(2)若对任意的a,b∈R,恒有M(a,b)≥M(a0,b0),求满足条件的所有实数对(a0,b0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已和命题P:函数y=logax在定义域上单调递减;$Q:\frac{a-2}{a+2}≤0$,若P∨Q是假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图所示的程序框图,若f(x)=logax,g(x)=lnx,输入x=2016,则输出的h(x)=(  )
A.2016B.2017C.loga2016D.loga2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2-2ax+4
(1)求函数y=f(x),x∈[0,2]的最小值
(2)若对任意x1,x2∈[0,2],都有|f(x1)-f(x2)|<4恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{{2}^{x}+\frac{a}{{2}^{x}}-2}$.
(1)若f(x)的定义域为R,求实数a的取值范围;
(2)若f(x)的值域为[0,+∞),求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若不等式$\frac{ax}{x-1}>1$的解集为(1,2),则实数a的值是$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案