精英家教网 > 高中数学 > 题目详情
9.在△ABC中,设a,b,c分别为角A,B,C的对边,若a=5,A=$\frac{π}{4}$,cosB=$\frac{3}{5}$,则边b=4$\sqrt{2}$.

分析 由已知利用同角三角函数基本关系式可求sinB的值,利用正弦定理即可求b的值.

解答 解:在△ABC中,∵cosB=$\frac{3}{5}$,B∈(0,π),
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{4}{5}$,
又∵a=5,A=$\frac{π}{4}$,
∴由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{5×\frac{4}{5}}{\frac{\sqrt{2}}{2}}$=4$\sqrt{2}$.
故答案为:4$\sqrt{2}$.

点评 本题主要考查了同角三角函数基本关系式,正弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在等差数列{an}中,已知a1=20,前n项和为Sn,且S6=S15
(1)求{an}的通项公式;
(2)求当n取何值时,Sn取得最大值,并求出它的最大值;
(3)求数列{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.等比数列{an}的前n项和为Sn,若S3是2a1与a2的等差中项,则该数列的公比q=(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$,(θ为参数),直线l经过点P(2,2),倾斜角α=$\frac{π}{3}$,设l与圆C相交于A,B两点,则|PA||PB|=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线y=x-1与抛物线y2=2x相交于P、Q两点,抛物线上一点M与P、Q构成△MPQ的面积为$\frac{{3\sqrt{3}}}{2}$,这样的点M有且只有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知x,y都是正实数,求证:x3+y3≥x2y+xy2
(2)已知a,b,c都是正实数,求证:a3+b3+c3≥$\frac{1}{3}$(a2+b2+c2)(a+b+c).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.计算定积分$\int_0^{\frac{π}{2}}{({3x+sinx})dx}$值是(  )
A.$\frac{{3{π^2}}}{8}-1$B.$\frac{{3{π^2}}}{8}+1$C.$\frac{{3{π^2}}}{4}-1$D.$\frac{{3{π^2}}}{4}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,直线l与双曲线$E:{x^2}-\frac{y^2}{4}=1$及其渐近线依次交于A、B、C、D四点,记$\frac{{|{AB}|}}{{|{BD}|}}=λ,\frac{{|{AC}|}}{{|{CD}|}}=μ$.
(Ⅰ)若直线l的方程为y=x+2,求λ及μ;
(Ⅱ)请根据(Ⅰ)的计算结果猜想λ与μ的关系,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.编写一个程序框图,求函数$f(x)=\left\{\begin{array}{l}2x,x≥3\\{x^2},x<3\end{array}\right.$的函数值.

查看答案和解析>>

同步练习册答案