精英家教网 > 高中数学 > 题目详情
18.如图所示,直线l与双曲线$E:{x^2}-\frac{y^2}{4}=1$及其渐近线依次交于A、B、C、D四点,记$\frac{{|{AB}|}}{{|{BD}|}}=λ,\frac{{|{AC}|}}{{|{CD}|}}=μ$.
(Ⅰ)若直线l的方程为y=x+2,求λ及μ;
(Ⅱ)请根据(Ⅰ)的计算结果猜想λ与μ的关系,并证明之.

分析 (Ⅰ)由相似三角形可得$\frac{{|{AB}|}}{{|{BD}|}}=λ=\frac{{{y_B}-{y_A}}}{{{y_D}-{y_B}}},\frac{{|{AC}|}}{{|{CD}|}}=μ=\frac{{{y_C}-{y_A}}}{{{y_D}-{y_C}}}$,直线y=x+2分别于双曲线方程和渐近线方程联立,可求得A,B,C,D四点的纵坐标,即可求得;
(Ⅱ)由(Ⅰ)的计算结果猜想λμ=1,证明:设A(x1,y1),D(x2,y2),根据相似三角形可解得${x_B}=\frac{{{x_1}+λ{x_2}}}{1+λ},{y_B}=\frac{{{y_1}+λ{y_2}}}{1+λ}$,同理可得${x_C}=\frac{{{x_1}+μ{x_2}}}{1+μ},{y_C}=\frac{{{y_1}+μ{y_2}}}{1+μ}$,又因为点B,C,在渐近线上,得出2x1+y1=-λ(2x2+y2),2x1-y1=-μ(2x2-y2),两式相乘得即可得到.

解答 解:(Ⅰ)由$\left\{\begin{array}{l}{y=x+2}\\{{x}^{2}-\frac{{y}^{2}}{4}=1}\end{array}\right.$,可得$\frac{3}{4}{y}^{2}-4y+3=0$,∴yA=$\frac{8-2\sqrt{7}}{3}$,yB=$\frac{8+2\sqrt{7}}{3}$
$\left\{\begin{array}{l}{y=x+2}\\{y=±2}\end{array}\right.$,∴yB=$\frac{4}{3}$,yC=4,
由相似三角形可得$\frac{{|{AB}|}}{{|{BD}|}}=λ=\frac{{{y_B}-{y_A}}}{{{y_D}-{y_B}}},\frac{{|{AC}|}}{{|{CD}|}}=μ=\frac{{{y_C}-{y_A}}}{{{y_D}-{y_C}}}$,
∴$λ=\frac{{2\sqrt{7}-4}}{{2\sqrt{7}+4}}$,$μ=\frac{{2\sqrt{7}+4}}{{2\sqrt{7}-4}}$;
(Ⅱ)由(Ⅰ)的计算结果猜想λμ=1,证明如下:
设A(x1,y1),D(x2,y2),则$\frac{{{x_B}-{x_1}}}{{{x_2}-{x_B}}}=\frac{{{y_B}-{y_1}}}{{{y_2}-{y_B}}}=λ$,
∴xB=$\frac{{x}_{1}+λ{x}_{2}}{1+λ}$,yB=$\frac{{y}_{1}+λ{y}_{2}}{1+λ}$
同理可得${x_C}=\frac{{{x_1}+μ{x_2}}}{1+μ},{y_C}=\frac{{{y_1}+μ{y_2}}}{1+μ}$
又yB=-2xB,yC=2xC
∴y1+λy2=-2(x1+λx2),y1+μy2=2(x1+μx2
即2x1+y1=-λ(2x2+y2),2x1-y1=-μ(2x2-y2
两式相乘得4x12-y12=λμ(4x22-y22)  
即4=4λμ,∴λμ=1,猜想得证.

点评 本题考查双曲线的方程,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.以下四个命题中,真命题的个数是 (  )
①若a+b≥2,则a,b中至少有一个不小于1;
②$\overrightarrow{a}$•$\overrightarrow{b}$=0是$\overrightarrow{a}$⊥$\overrightarrow{b}$的充要条件;
③?x∈[0,+∞),x3+x≥0;
④函数y=f(x+1)是奇函数,则y=f(x)的图象关于(1,0)对称.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,设a,b,c分别为角A,B,C的对边,若a=5,A=$\frac{π}{4}$,cosB=$\frac{3}{5}$,则边b=4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=alnx+\frac{1}{x}+\frac{1}{{2{x^2}}},a∈R$.
(1)a=2时,讨论函数f(x)的单调性;
(2)证明:$({x-1})({{e^{-x}}-x})+2lnx<\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行抽样调查,调查结果如表所示
喜欢甜品不喜欢甜品总计
南方学生503080
北方学生101020
总计6040100
(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”
(2)已知在被调查的北方学生中有4人是数学系的学生,其中2人喜欢甜品,现在从这4名学生中随机抽取2人,求恰有1人喜欢甜品的概率?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
下面的临界表供参考:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若命题p的否命题为r,命题r的逆命题为s,p的逆命题为t,则s是t的(  )
A.逆否命题B.逆命题C.否命题D.原命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,a、b、c分别为A、B、C的对边,若2b=a+c,B=30°,则△ABC的面积为$\frac{3}{2}$,则b的值1+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.点A(2,-3)关于直线y=-x+1的对称点为(  )
A.(3,-2)B.(4,-1)C.(5,0)D.(3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将数列{2n-1}按“第n组有n个数”的规则分组如下:(1),(3,5),(7,9,11),…,则第100组中的第三个数是9905.

查看答案和解析>>

同步练习册答案