精英家教网 > 高中数学 > 题目详情
已知p:xy=0,q:x=0,则p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据充分条件和必要条件的定义即可得到结论.
解答: 解:当y=0,x≠0时,满足xy=0,但x=0不成立,∴充分性不成立.
若x=0,则xy=0成立,必要性成立,
∴p是q的必要不充分条件,
故选:B.
点评:本题主要考查充分条件和必要条件的判断,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

化简:cos2α(1+tan2α)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆的长轴为6,短轴为4,则椭圆的标准方程是(  )
A、
x2
9
+
y2
4
=1
B、
y2
9
+
x2
4
=1
C、
x2
9
+
y2
4
=1或
y2
9
+
x2
4
=1
D、以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:

下列选项中,p是q的必要不充分条件的是(  )
A、p:x=1,q:x2=x
B、p:|a|>|b|,g:a2>b2
C、p:x>a2+b2,q:x>2ab
D、p:a+c>b+d,q:a>b且c>d

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线(2n+1)x+(n+5)y-6=0和(n-3)x+(1-2n)y-7=0垂直,则n的值为(  )
A、
1
7
B、-
1
3
C、1
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-2x-8<0},B={y|y=log2(x2+2)},则A∩B=(  )
A、(-2,-1]
B、[-1,4)
C、(-∞,4)
D、[1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(1)证明:AE⊥平面PAD;
(2)取AB=2,若H为PD上的动点,EH与平面PAD所成最大角的正切值为
6
2
,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

用记号
n
i=0
ai表示a0+a1+a2+a3+…+an,bn=
n
i=0
a2i,其中i∈N,n∈N*
(1)设
2n
k=1
(1+x)k=a0+a1x+a2x2+…+a2n-1x2n-1+a2nx2n(x∈R),求b2的值;
(2)若a0,a1,a2,…,an成等差数列,求证:
n
i=0
(aiC
 
i
n
)=(a0+an)•2n-1
(3)在条件(1)下,记dn=1+
n
i=0
[(-1)ibiC
 
i
n
],且不等式t•(dn-1)≤bn恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数g(x)=3x,h(x)=9x
(1)解方程:h(x)-8g(x)-h(1)=0;
(2)令p(x)=
g(x)
g(x)+
3
,求证:p(
1
2014
)+p(
2
2014
)+…+p(
2013
2014
)=
2013
2

(3)若f(x)=
g(x+1)+a
g(x)+b
是实数集R上的奇函数,且f(h(x)-1)+f(2-k•g(x))>0对任意实数x恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案