精英家教网 > 高中数学 > 题目详情
如图,直三棱柱ABC-A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.
(1)若DE∥平面A1MC1,求
CE
EB

(2)求直线BC和平面A1MC1所成角的余弦值.
考点:直线与平面所成的角,直线与平面平行的性质
专题:空间角
分析:(1)取BC中点N,连结MN,C1N,由已知得A1,M,N,C1四点共面,由已知条件推导出DE∥C1N,从而求出
CE
EB
=
1
3

(2)连结B1M,由已知条件得四边形ABB1A1为矩形,B1C1与平面A1MC1所成的角为∠B1C1M,由此能求出直线BC和平面A1MC1所成的角的余弦值.
解答: 解:(1)取BC中点N,连结MN,C1N,…(1分)
∵M,N分别为AB,CB中点
∴MN∥AC∥A1C1
∴A1,M,N,C1四点共面,…(3分)
且平面BCC1B1∩平面A1MNC1=C1N,
又DE∩平面BCC1B1
且DE∥平面A1MC1,∴DE∥C1N,
∵D为CC1的中点,∴E是CN的中点,…(5分)
CE
EB
=
1
3
.…(6分)
(2)连结B1M,…(7分)
因为三棱柱ABC-A1B1C1为直三棱柱,∴AA1⊥平面ABC,
∴AA1⊥AB,即四边形ABB1A1为矩形,且AB=2AA1
∵M是AB的中点,∴B1M⊥A1M,
又A1C1⊥平面ABB1A1
∴A1C1⊥B1M,从而B1M⊥平面A1MC1,…(9分)
∴MC1是B1C1在平面A1MC1内的射影,
∴B1C1与平面A1MC1所成的角为∠B1C1M,
又B1C1∥BC,
∴直线BC和平面A1MC1所成的角即B1C1与平面A1MC1所成的角…(10分)
设AB=2AA1=2,且三角形A1MC1是等腰三角形
A1M=A1C1=
2
,则MC1=2,B1C1=
6

∴cosB1C1M=
MC1
B1C1
=
6
3

∴直线BC和平面A1MC1所成的角的余弦值为
6
3
.…(12分)
点评:本题考查两条线段的比值的求法,考查角的余弦值的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+ax+4
x
(x>0).
(1)求证:函数f(x)在[2,+∞)单调递增;
(2)A={x|x2-5x+4<0},B={x|f(x)<2},若B⊆A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+alnx-1,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若2f(x)+
lnx
x
≥0对于任意x∈[1,+∞)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,设命题p:对数函数y=logax在R+上单调递减,命题q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点,如果“p∨q”为真,且“p∧q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某种汽车购车时费用为10万元,每年保险、汽油等费用为0.9万元;汽车的维修费用各年为:第一年0.2万元,以后每年以0.2万元的增量逐年递增.
(1)写出该种汽车使用n年后总费用Sn的表达式
(2)问这种汽车使用多少年报废最合算(平均费用最少)?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=t>1,an+1=
n+1
n
an.函数f(x)=ln(1+x)+mx2-x(m∈[0,
1
2
]).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)试讨论函数f(x)的单调性;
(Ⅲ)若m=
1
2
,数列{bn}满足bn=f(an)+an,求证:
2
an+2
an
bn
<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;
(Ⅱ)当x∈(
1
2
,1)时,f(x)≤g(x)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为2的正方体ABCD-A1B1C1D1中,M、N分别是A1A、B1B的中点.
(1)求直线CM与A1C1所成角的正弦值;
(2)求直线D1N与平面A1ABB1所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的一个顶点与抛物线x2=4
2
y的焦点重合,F1,F2分布是椭圆的左、右焦点,离心率e=
3
3
,过椭圆右焦点F2的直线l与椭圆C交于M,N两点,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)当
OM
ON
=-1时,求直线l的方程;
(Ⅲ)若AB是椭圆C经过原点O的弦,MN∥AB,是否存在常数λ,使|AB|=λ
|MN|
?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案