精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A,B,C的对边分别为a,b,c,已知b2+c2-
2
bc=a2
c
b
=2
2

(1)求角A;
(2)求tanB的值.
考点:余弦定理,正弦定理
专题:解三角形
分析:(1)由余弦定理表示出cosA,将已知等式变形后代入求出cosA的值,即可确定出A的度数;
(2)已知等式利用正弦定理化简,得到关系式,由A的度数及内角和定理表示出C,代入关系式中利用两角和与差的正弦函数公式化简,整理后即可确定出tanB的值.
解答: 解:(1)∵b2+c2-
2
bc=a2,即b2+c2-a2=
2
bc,
∴cosA=
b2+c2-a2
2bc
=
2
2

∵A为三角形内角,
∴A=
π
4

(2)将
c
b
=2
2
,利用正弦定理化简得:
sinC
sinB
=2
2
,即sinC=2
2
sinB,
∴sin(
4
-B)=2
2
sinB,即
2
2
cosB+
2
2
sinB=2
2
sinB,
整理得:
3
2
2
sinB=
2
2
cosB,
则tanB=
1
3
点评:此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知不等式ax2-3x+2<0的解集为A={x|1<x<b}.
(1)求a,b的值.
(2)求函数f(x)=(2a+b)x+
25
(b-a)x+a
,(x∈A)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆E中心在原点,焦点在x轴上,短轴长为4,点Q(2,
2
)在椭圆上.
(1)求椭圆E的方程;
(2)设动直线L交椭圆E于A、B两点,且
OA
OB
,求△OAB的面积的取值范围.
(3)过M(x1,y1)的直线l1:x1x+2y1y=8
2
与过N(x2,y2)的直线l2:x2x+2y2y=8
2
的交点P(x0,y0)在椭圆E上,直线MN与椭圆E的两准线分别交于G,H两点,求
OG
OH
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
1
2
ax2-bx,设h(x)=f(x)-g(x)
(1)若g(2)=2,讨论函数h(x)的单调性;
(2)若函数g(x)是关于x的一次函数,且函数h(x)有两个不同的零点x1,x2
①求b的取值范围;
②求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体AC1中,E为BC中点,在棱CC1上求一点P,使平面A1B1P⊥平面C1DE;并说明原因.

查看答案和解析>>

科目:高中数学 来源: 题型:

国内跨省市之间邮寄信函,每封信函的质量和对应的邮资如下表:
信函质量(m)/g0<m≤2020<m≤4040<m≤6060<M≤8080<m≤100
邮资(M)/元1.202.403.604.806.00
画出图象,并写出函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+bx+c为偶函数,且f(1)=3.
(1)求f(x)的解析式
(2)若x∈(-1,2)时,均有f(x)+m<2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x2-ax,(x<1)
(a-3)x-1,(x≥1)
满足对任意x1≠x2,都有
f(x1)-f(x2)
x1-x2
<0成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

解下列不等式(组):
(1)
3x2-7x-10≤0
2x2-5x+2>0

(2)
x+1
x2-2x-3
≤-1
(3)|x+2|+|x-1|<4.

查看答案和解析>>

同步练习册答案