精英家教网 > 高中数学 > 题目详情
6.某几何体的三视图如图所示,这个几何体的表面积为(  )
A.18+2$\sqrt{3}$B.12+3$\sqrt{3}$C.12+2$\sqrt{3}$D.11$\sqrt{3}$

分析 由已知中的三视图,可知该几何体是平放的三棱柱,求各个面的表面积,即可得到该几何体的表面积.

解答 解:由已知中的三视图,可知该几何体是平放的三棱柱,
底面为等边三角形,其两个底面的面积为:$\frac{1}{2}×2×\sqrt{3}×2$=2$\sqrt{3}$.
侧面为3个相等的矩形.其三个的面积为:3×2×3=18.
∴该几何体的表面积为18+2$\sqrt{3}$.
故选A.

点评 本题考查了三视图的投影认识和理解能力.空间想象思维的能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列函数中,既是偶函数又在(0,+∞)上单调递增的是(  )
A.y=exB.y=sinxC.y=cosxD.y=lnx2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\sqrt{1-x}$+$\frac{1}{x+1}$的定义域为(-∞,-1)∪(-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.把2016(8)化成二进制为(  )
A.10000001110(2)B.10000011110(2)C.100000011101(2)D.10000001100(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=log${\;}_{\frac{1}{2}}}$(sinxcosx)的递减区间是(  )
A.$(kπ,kπ+\frac{π}{4})$B.$(2kπ,2kπ+\frac{π}{2})$C.$[kπ+\frac{π}{4},kπ+\frac{π}{2})$D.以上都不对.(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆O:x2+y2=25和圆C:x2+y2-4x-2y-20=0相交于A、B两点,求公共弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$\frac{4sinθ-2cosθ}{3sinθ+5cosθ}$=$\frac{6}{11}$,求下列各式的值.
(1)tanθ;
(2)$\frac{5cos{\;}^{2}θ}{sin2θ+2sinθcosθ-3cos{\;}^{2}θ}$;
(3)1-4sin θcos θ+2cos2θ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=sinωx+cosωx(ω>0),x∈R,若函数f(x)在区间$({-\frac{ω}{4},\frac{ω}{4}})$内单调递增,且函数f(x)的图象关于直线$x=\frac{ω}{4}$对称,则ω的值$\sqrt{π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\frac{π}{2}<θ<π$,$sinθ=\frac{4}{5}$,则tan(π-θ)的值为(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

同步练习册答案