精英家教网 > 高中数学 > 题目详情

【题目】已知函数

)若为增函数,试求实数的取值范围.

)当,若存在,使成立,试确定实数的取值范围.

)设函数,求证:

i

ii

【答案】(1);(2);(3)(i证明见解析,ii证明见解析.

【解析】试题分析:(1为增函数,等价于上恒成立,只需的最大值即可得到实数的取值范围;(2存在,使得,等价于存在 成立,设,则利用导数研究函数的单调性,根据单调性求最值即可得结果;3)(i利用基本不等式及放缩法可得结论;由(i)可得: 各式相乘即可得结论.

试题解析:( )由,得

为增函数,

上恒成立,

恒成立,

∵当时,

即实数的取值范围是

)由题意,存在,使得

等价于存在 成立,

,则

,令,得

上是减函数,在上是增函数,

上的最小值是

,即实数的取值范围是

)证明:由题意

i

ii)由(i)可得:

以上式子相乘可得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的顶点 边上的中线所在的直线方程为 边上的高所在直线的方程为

)求的顶点的坐标.

若圆经过不同的三点,且斜率为的直线与圆相切于点,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率为

(I)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点.若直线上存在点,使得四边形是平行四边形,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个对应f不是从集合A到集合B的函数的是( )

A. AB={-6,-3,1},f (1)=-3,

B. AB={x|x≥-1},f (x)=2x+1;

C. AB={1,2,3},f (x)=2x-1;

D. A=Z,B={-1,1},n为奇数时,f (n)=-1,n为偶数时,f (n)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为1的正方形,底面,点是棱的中点.

(1)求证:平面

(2)求与平面所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C的参数方程;
(2)设直线l:2x+y﹣2=0与C的交点为P1 , P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时,.

(1)已画出函数轴左侧的图像,如图所示,请补出完整函数的图像,并根据图像写出函数的增区间;

⑵写出函数的解析式和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .若gx)存在2个零点,则a的取值范围是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合U=R,集合A={x|x2-(a-2)x-2a≥0},B={x|1≤x≤2}.

(1)当a=1时,求A∩B;

(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案