精英家教网 > 高中数学 > 题目详情
11.求下列函数的值域:
(1)y=$\frac{1}{2{+3}^{x}}$;(2)y=22x-2x+1

分析 (1)利用指数函数性质求解;
(2)换元转化为二次函数求解,注意新元的范围.

解答 解:(1)y=$\frac{1}{2{+3}^{x}}$;
∵3x>0,
∴2+3x>2,
∴0<$\frac{1}{2+{3}^{x}}$$<\frac{1}{2}$,
∴值域为:(0,$\frac{1}{2}$);
(2)y=22x-2x+1
设t=2x,t>0,
y=t2-2t,t>0,
当t=1时,y最小值=-1,
∴值域为:[-1,+∞).

点评 本题考查了函数的性质,运用求解值域问题,关键根据解析式判断方法,准确求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.A,B是平面α外不同的两个定点,P为平面α内动点,且cos∠PAB=$\frac{1}{3}$,则P点的轨迹是(  )
A.圆或椭圆B.抛物线或双曲线C.椭圆或双曲线D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.工厂生产零件,日销售量x(件)与销售价P之间关系为P=150-2x,生产x件零件的成本为R=500+30x,产品都能售出.问:日销售量多大时,日利润最多,最多获利是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(x+1)lnx-x+1.
(1)求函数f(x)在点(1,f(1))的切线方程;
(2)若xf′(x)=x2+ax+1在x∈(0,+∞)上没有实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.公差大于0的等差数列{an}的前n项和为Sn,且满足a3•a7=105,a2+a8=22.
(I)求数列{an}的通项公式;
(Ⅱ)设bn•Sn=$\frac{4}{3}$,数列{bn}的前n项和为Tn,求证:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过两条直线x-2y+3=0和x+2y-9=0的交点和原点的直线的方程是x-y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{-\frac{1}{2}{x}^{2}+x+1,x<0}\end{array}\right.$
(1)x>0时,f(x)>$\frac{1}{2}$x2+x+1;
(2)若有两个不相等的实数x1,x2满足f(x1)+f(x2)=2,证明:x1+x2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,过F2与双曲线的一条渐近线平行的直线与另一条渐近线平行的直线与另一条渐近线交于点M,且cos∠F1MF2=0,则双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.二项式($\frac{1}{{x}^{2}}$-$\sqrt{x}$)n展开式中含有x项,则n可能的取值是(  )
A.10B.9C.8D.7

查看答案和解析>>

同步练习册答案