分析 根据直角三角形中的边角关系,求得MA、MB的值以及cos∠AMB的值,再利用 两个向量的数量积的定义求得$\overrightarrow{MA}•\overrightarrow{MB}$值.
解答 解:由圆的切线性质可得,OA⊥MA,OB⊥MB.
直角三角形OAM、OBM中,由sin∠AMO=sin∠BMO=$\frac{1}{\sqrt{10}}$,可得cos∠AMB=1-2×$\frac{1}{10}$=$\frac{4}{5}$,
MA=MB=$\sqrt{1+9-1}$=3,
∴$\overrightarrow{MA}•\overrightarrow{MB}$=$3×3×\frac{4}{5}$=$\frac{36}{5}$.
故答案为$\frac{36}{5}$.
点评 本题主要考查直角三角形中的边角关系,两个向量的数量积的定义,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 点P在线段AB上 | B. | 点P在线段AB的反向延长线上 | ||
| C. | 点P在线段AB的延长线上 | D. | 点P不在直线AB上 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ①④ | C. | ②④ | D. | ②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | [0,+∞) | C. | [1,+∞) | D. | [0,1] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com