13£®Èô´æÔÚʵ³£ÊýkºÍb£¬Ê¹µÃº¯ÊýF£¨x£©ºÍG£¨x£©¶ÔÆä¹«¹²¶¨ÒåÓòÉϵÄÈÎÒâʵÊýx¶¼Âú×㣺F£¨x£©¡Ýkx+bºÍG£¨x£©¡Ükx+bºã³ÉÁ¢£¬Ôò³Æ´ËÖ±Ïßy=kx+bΪF£¨x£©ºÍG£¨x£©µÄ¡°¸ôÀëÖ±Ïß¡±£¬ÒÑÖªº¯Êýf£¨x£©=x2£¨x¡ÊR£©£¬g£¨x£©=$\frac{1}{x}$£¨x£¼0£©£¬h£¨x£©=2elnx£¬ÓÐÏÂÁÐÃüÌ⣺
¢ÙF£¨x£©=f£¨x£©-g£¨x£©ÔÚ$x¡Ê£¨{-\frac{1}{{\root{3}{2}}}£¬0}£©$ÄÚµ¥µ÷µÝÔö£»
¢Úf£¨x£©ºÍg£¨x£©Ö®¼ä´æÔÚ¡°¸ôÀëÖ±Ïß¡±£¬ÇÒbµÄ×îСֵΪ-4£»
¢Ûf£¨x£©ºÍg£¨x£©Ö®¼ä´æÔÚ¡°¸ôÀëÖ±Ïß¡±£¬ÇÒkµÄȡֵ·¶Î§ÊÇ£¨-4£¬0]£»•
¢Üf£¨x£©ºÍh£¨x£©Ö®¼ä´æÔÚΨһµÄ¡°¸ôÀëÖ±Ïß¡±y=2$\sqrt{e}$x-e£®
ÆäÖÐÕæÃüÌâΪ¢Ù¢Ú¢Ü£¨ÇëÌîËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©

·ÖÎö ¢ÙÇó³öF£¨x£©=f£¨x£©-g£¨x£©µÄµ¼Êý£¬¼ìÑéÔÚx¡Ê£¨-$\frac{1}{\root{3}{2}}$£¬0£©Äڵĵ¼Êý·ûºÅ£¬¼´¿ÉÅжϣ»
¢Ú¡¢¢ÛÉèf£¨x£©¡¢g£¨x£©µÄ¸ôÀëÖ±ÏßΪy=kx+b£¬x2¡Ýkx+b¶ÔÒ»ÇÐʵÊýx³ÉÁ¢£¬¼´ÓС÷1¡Ü0£¬ÓÖ$\frac{1}{x}$¡Ükx+b¶ÔÒ»ÇÐx£¼0³ÉÁ¢£¬¡÷2¡Ü0£¬k¡Ü0£¬b¡Ü0£¬¸ù¾Ý²»µÈʽµÄÐÔÖÊ£¬Çó³ök£¬bµÄ·¶Î§£¬¼´¿ÉÅжϢڢۣ»
¢Ü´æÔÚf£¨x£©ºÍg£¨x£©µÄ¸ôÀëÖ±Ïߣ¬ÄÇô¸ÃÖ±Ïß¹ýÕâ¸ö¹«¹²µã£¬Éè¸ôÀëÖ±ÏßµÄбÂÊΪk£®Ôò¸ôÀëÖ±Ïߣ¬¹¹Ô캯Êý£¬Çó³öº¯Êýº¯ÊýµÄµ¼Êý£¬¸ù¾Ýµ¼ÊýÇó³öº¯ÊýµÄ×îÖµ

½â´ð ½â£º¢Ù¡ßF£¨x£©=f£¨x£©-g£¨x£©=x2-$\frac{1}{x}$£¬¡àx¡Ê£¨-$\frac{1}{\root{3}{2}}$£¬0£©£¬F¡ä£¨x£©=2x+$\frac{1}{{x}^{2}}$£¾0£¬
¡àF£¨x£©=f£¨x£©-g£¨x£©ÔÚx¡Ê£¨-$\frac{1}{\root{3}{2}}$£¬0£©ÄÚµ¥µ÷µÝÔö£¬¹Ê¢Ù¶Ô£»
¢Ú¡¢¢ÛÉèf£¨x£©¡¢g£¨x£©µÄ¸ôÀëÖ±ÏßΪy=kx+b£¬Ôòx2¡Ýkx+b¶ÔÒ»ÇÐʵÊýx³ÉÁ¢£¬¼´ÓС÷1¡Ü0£¬k2+4b¡Ü0£¬
ÓÖ$\frac{1}{x}$¡Ükx+b¶ÔÒ»ÇÐx£¼0³ÉÁ¢£¬Ôòkx2+bx-1¡Ü0£¬¼´¡÷2¡Ü0£¬b2+4k¡Ü0£¬k¡Ü0£¬b¡Ü0£¬
¼´ÓÐk2¡Ü-4bÇÒb2¡Ü-4k£¬k4¡Ü16b2¡Ü-64k⇒-4¡Ük¡Ü0£¬Í¬Àí⇒-4¡Üb¡Ü0£¬¹Ê¢Ú¶Ô£¬¢Û´í£»
¢Üº¯Êýf£¨x£©ºÍh£¨x£©µÄͼÏóÔÚx=$\sqrt{e}$´¦Óй«¹²µã£¬Òò´Ë´æÔÚf£¨x£©ºÍg£¨x£©µÄ¸ôÀëÖ±Ïߣ¬
ÄÇô¸ÃÖ±Ïß¹ýÕâ¸ö¹«¹²µã£¬Éè¸ôÀëÖ±ÏßµÄбÂÊΪk£®Ôò¸ôÀëÖ±Ïß·½³ÌΪy-e=k£¨x-$\sqrt{e}$£©£¬¼´y=kx-k$\sqrt{e}$+e£¬
ÓÉf£¨x£©¡Ýkx-k$\sqrt{e}$+e£¨x¡ÊR£©£¬¿ÉµÃx2-kx+k$\sqrt{e}$-e¡Ý0µ±x¡ÊRºã³ÉÁ¢£¬
Ôò¡÷¡Ü0£¬Ö»ÓÐk=2$\sqrt{e}$£¬´ËʱֱÏß·½³ÌΪ£ºy=2$\sqrt{e}$x-e£¬
ÏÂÃæÖ¤Ã÷h£¨x£©¡Ü2$\sqrt{e}$x-e£¬ÁîG£¨x£©=2$\sqrt{e}$x-e-h£¨x£©=2$\sqrt{e}$x-e-2elnx£¬
G¡ä£¨x£©=$\frac{2\sqrt{e}£¨x-\sqrt{e}£©}{x}$£¬
µ±x=$\sqrt{e}$ʱ£¬G¡ä£¨x£©=0£¬µ±0£¼x£¼$\sqrt{e}$ʱ£¬G¡ä£¨x£©£¼0£¬µ±x£¾$\sqrt{e}$ʱ£¬G¡ä£¨x£©£¾0£¬
Ôòµ±x=$\sqrt{e}$ʱ£¬G£¨x£©È¡µ½¼«Ð¡Öµ£¬¼«Ð¡ÖµÊÇ0£¬Ò²ÊÇ×îСֵ£®
ËùÒÔG£¨x£©=2$\sqrt{e}$x-e-g£¨x£©¡Ý0£¬Ôòg£¨x£©¡Ü2$\sqrt{e}$x-eµ±x£¾0ʱºã³ÉÁ¢£®
¡àº¯Êýf£¨x£©ºÍg£¨x£©´æÔÚΨһµÄ¸ôÀëÖ±Ïßy=2$\sqrt{e}$x-e£¬¹Ê¢ÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü£®

µãÆÀ ±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃÎªÔØÌ壬¿¼²éж¨Ò壬¹Ø¼üÊǶÔж¨ÒåµÄÀí½â£¬¿¼²éº¯ÊýµÄÇóµ¼£¬ÀûÓõ¼ÊýÇó×îÖµ£¬ÊôÓÚÄÑÌâ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èôf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄÔöº¯Êý£¬ÏÂÁк¯ÊýÖÐ
¢Ùy=[f£¨x£©]2ÊÇÔöº¯Êý£»
¢Úy=$\frac{1}{f£¨x£©}$ÊǼõº¯Êý£»
¢Ûy=-f£¨x£©ÊǼõº¯Êý£»
¢Üy=|f£¨x£©|ÊÇÔöº¯Êý£»
ÆäÖÐÕýÈ·µÄ½áÂÛÊÇ£¨¡¡¡¡£©
A£®¢ÛB£®¢Ú¢ÛC£®¢Ú¢ÜD£®¢Ù¢Û

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÈôÕýÁùÀâ×¶µÄµ×Ãæ±ß³¤Îª2cm£¬Ìå»ýΪ2$\sqrt{3}$cm3£¬ÔòËüµÄ²àÃæ»ýΪ12cm2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÈôÃüÌâ¡°ÈÎÒâx¡ÊR£¬ax2+ax+1£¾0¡±ÊÇÕæÃüÌ⣬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[0£¬4]B£®[0£¬4£©C£®£¨0£¬4]D£®£¨0£¬4£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑ֪ij¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄ±íÃæ»ýΪ$\frac{3¦Ð}{2}$+$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x-y+5¡Ü0\\ x+y¡Ý0\\ y¡Ü3\end{array}$£¬Ôòz=4x+2yµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®-8B£®-6C£®-5D£®-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÉèÊýÁÐ{an}µÄǰÏînºÍΪSn£¬Èô¶ÔÓÚÈÎÒâµÄÕýÕûÊýn¶¼ÓÐSn=2an-2n£®
£¨1£©Çóa1£¬a2£¬a3µÄÖµ£»
£¨2£©Éèbn=an+2£¬ÇóÖ¤£ºÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬
£¨3£©ÇóÊýÁÐ{nan}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®¹ýµãM£¨1£¬3£©×÷Ô²x2+y2=1µÄÁ½ÌõÇÐÏߣ¬ÇеãΪA£¬B£¬Ôò$\overrightarrow{MA}•\overrightarrow{MB}$=$\frac{36}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=ax-1-lnx£¨a¡ÊR£©£®
£¨1£©µ±$a=\frac{1}{4}$ʱ£¬Çóº¯Êýy=f£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èôf£¨x£©ÔÚx=1´¦È¡µÃ¼«Öµ£¬¶Ô?x¡Ê£¨0£¬+¡Þ£©£¬f£¨x£©¡Ýbx-2ºã³ÉÁ¢£¬ÇóʵÊýbµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸