【题目】已知函数 (a>0).
(1)证明:当x>0时,f(x)在 上是减函数 ,在上是增函数,并写出当x<0时f(x)的单调区间;
(2)已知函数 ,函数g(x)=﹣x﹣2b,若对任意x1∈[1,3],总存在x2∈[1,3],使得g(x2)=h(x1)成立,求实数b的取值范围.
【答案】
(1)证明:当x>0时,
①设x1,x2是区间 上的任意两个实数,且x1<x2,
则 = =(x1﹣x2) ,
∵x1,x2∈ ,且x1<x2,
∴0<x1x2<a,x1﹣x2<0,x1x2>0,
∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),
∴f(x)在 上是减函数,
②同理可证在f(x)在 上是增函数;
综上所述得:当x>0时,f(x)在 上是减函数,在 上是增函数.
∵函数 是奇函数,根据奇函数图象的性质可得,
当x<0时,f(x)在 是减函数,在 是增函数
(2)解:∵ (x∈[1,3]),
由(Ⅰ)知:h(x)在[1,2][1,3]上单调递减,[2,3]上单调递增,
∴h(x)min=h(2)=﹣4,h(x)max=maxh(3),h(1)=﹣3,
h(x)∈[﹣4,﹣3],
又∵g(x)在[1,3]上单调递减,
∴由题意知,[﹣4,﹣3][﹣3﹣2b,﹣1﹣2b],
于是有: ,解得 .
故实数b的范围是
【解析】(1)利用函数单调性的定义可证明x>0时的单调性,根据奇函数性质可求x<0时f(x)的单调区间;(2)对任意x1∈[1,3],总存在x2∈[1,3],使得g(x2)=h(x1)成立,等价于h(x)的值域为g(x)值域的子集,利用函数单调性易求两函数值域;
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】如图平行四边形ABCD中,∠DAB=60°,AB=2,AD=2,M为CD边的中点,沿BM将△CBM折起使得平面BMC⊥平面ABMD.
(1)求四棱锥C﹣ADMB的体积;
(2)求折后直线AB与平面AMC所成的角的正弦.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对定义域分别为D1 , D2的函数y=f(x),y=g(x),规定:函数h(x)= ,f(x)=x﹣2(x≥1),g(x)=﹣2x+3(x≤2),则h(x)的单调减区间是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= x2﹣ax﹣1,x∈[﹣5,5]
(1)当a=2,求函数f(x)的最大值和最小值;
(2)若函数f(x)在定义域内是单调函数,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )
A. 钱
B. 钱
C. 钱
D. 钱
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)= +lg(1+3x)的定义域是( )
A.(﹣∞,﹣ )?
B.(﹣ , )∪( ,+∞)?
C.( ,+∞)?
D.( , )∪( ,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com