精英家教网 > 高中数学 > 题目详情
11.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=$(-\frac{{\sqrt{3}}}{2},-\frac{1}{2})$,且($\overrightarrow{a}$+k$\overrightarrow{b}$)⊥($\overrightarrow{a}$-k$\overrightarrow{b}$),则实数k=±$\sqrt{5}$.

分析 根据两向量垂直数量积为0,列出方程即可求出实数k的值.

解答 解:向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=$(-\frac{{\sqrt{3}}}{2},-\frac{1}{2})$,
∴${\overrightarrow{a}}^{2}$=22+(-1)2=5,
${\overrightarrow{b}}^{2}$=${(-\frac{\sqrt{3}}{2})}^{2}$+${(-\frac{1}{2})}^{2}$=1;
又($\overrightarrow{a}$+k$\overrightarrow{b}$)⊥($\overrightarrow{a}$-k$\overrightarrow{b}$),
∴($\overrightarrow{a}$+k$\overrightarrow{b}$)•($\overrightarrow{a}$-k$\overrightarrow{b}$)=0,
即${\overrightarrow{a}}^{2}$-k2${\overrightarrow{b}}^{2}$=0,
∴5-k2=0,
解得k=±$\sqrt{5}$.
故答案为:±$\sqrt{5}$.

点评 本题考查了平面向量的模长公式与数量积公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.圆锥的底面半径为1,高为2,则圆锥侧面展开图的圆心角大小为$\frac{2\sqrt{5}}{5}$π(用弧度数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)是定义在R上的奇函数,且x>0时,f(x)=lnx,则ef(-2)的值为(  )
A.$\frac{1}{e}$B.$\frac{1}{2}$C.$\frac{1}{{e}^{2}}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设直线l的方程是x+my+2$\sqrt{3}$=0,圆O的方程是x2+y2=r2(r>0).
(1)当m取一切实数时,直线l与圆O都有公共点,求r的取值范围;
(2)r=5时,求直线l被圆O截得的弦长的取值范围;
(3)当r=1时,设圆O与x轴相交于P、Q两点,M是圆O上异于P、Q的任意一点,直线PM交直线l′:x=3于点P′,直线QM交直线l′于点Q′.求证:以P′Q′为直径的圆C总经过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果方程x2+ky2=2表示椭圆,那么实数k的取值范围是(0,1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$sin({\frac{π}{3}+α})=\frac{1}{3}$,则$cos({\frac{π}{3}-2α})$的值等于(  )
A.$-\frac{5}{9}$B.$-\frac{7}{9}$C.$\frac{5}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若A={x|y=log3(x-2)},B={y|y=-|x|},则A∪∁B=(  )
A.(0,+∞)B.[0,+∞)C.(2,+∞)D.[0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an},点(1,a1),(2,a2)…(n,an)…均在同一条斜率大于零的直线上,满足a1=1,a3=a${\;}_{2}^{2}$-4,则数列{an}的前n项和为n2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={1,2,m2},且B={3,2},B⊆A,则m=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$±\sqrt{3}$

查看答案和解析>>

同步练习册答案