1£®ÉèÖ±ÏßlµÄ·½³ÌÊÇx+my+2$\sqrt{3}$=0£¬Ô²OµÄ·½³ÌÊÇx2+y2=r2£¨r£¾0£©£®
£¨1£©µ±mȡһÇÐʵÊýʱ£¬Ö±ÏßlÓëÔ²O¶¼Óй«¹²µã£¬ÇórµÄȡֵ·¶Î§£»
£¨2£©r=5ʱ£¬ÇóÖ±Ïßl±»Ô²O½ØµÃµÄÏÒ³¤µÄȡֵ·¶Î§£»
£¨3£©µ±r=1ʱ£¬ÉèÔ²OÓëxÖáÏཻÓÚP¡¢QÁ½µã£¬MÊÇÔ²OÉÏÒìÓÚP¡¢QµÄÈÎÒâÒ»µã£¬Ö±ÏßPM½»Ö±Ïßl¡ä£ºx=3ÓÚµãP¡ä£¬Ö±ÏßQM½»Ö±Ïßl¡äÓÚµãQ¡ä£®ÇóÖ¤£ºÒÔP¡äQ¡äΪֱ¾¶µÄÔ²C×ܾ­¹ý¶¨µã£¬²¢Çó³ö¶¨µã×ø±ê£®

·ÖÎö £¨1£©Ö»ÐèÖ±ÏßËù¹ýµÄ¶¨µãÔÚÔ²ÄÚ£¬¼´¿ÉʹµÃmȡһÇÐֵʱ£¬Ö±ÏßÓëÔ²¶¼Óй«¹²µã£»
£¨2£©ÏÔÈ»¶¨µãÓëÔ²ÐĵÄÁ¬Ïß´¹Ö±ÓÚÖ±Ïßʱ£¬ÏÒ³¤×î¶Ì£¬Ö±Ïß¹ýÔ²ÐÄʱ£¬ÏÒ³¤ÎªÖ±¾¶×î´ó£®
£¨3£©ÓÉÒÑÖªÎÒÃÇÒ×Çó³öP£¬QÁ½¸öµãµÄ×ø±ê£¬Éè³öMµãµÄ×ø±ê£¬ÎÒÃÇ¿ÉÒԵõ½µãP¡äÓëQ¡äµÄ×ø±ê£¨º¬²ÎÊý£©£¬½ø¶øµÃµ½ÒÔP¡äQ¡äΪֱ¾¶µÄÔ²µÄ·½³Ì£¬¸ù¾ÝÔ²µÄ·½³Ì¼´¿ÉÅжϽáÂÛ£®

½â´ð ½â£º£¨1£©Ö±Ïßl¹ý¶¨µã£¨-2$\sqrt{3}$£¬0£©£¬µ±mȡһÇÐʵÊýʱ£¬Ö±ÏßlÓëÔ²O¶¼Óй«¹²µãµÈ¼ÛÓڵ㣨-2$\sqrt{3}$£¬0£©ÔÚÔ²OÄÚ»òÔÚÔ²OÉÏ£¬
ËùÒÔ12+0¡Ür2£¬½âµÃr¡Ý2$\sqrt{3}$£®
ËùÒÔrµÄȡֵ·¶Î§ÊÇ[2$\sqrt{3}$£¬+¡Þ£©£»
£¨2£©Éè×ø±êΪ£¨-2$\sqrt{3}$£¬0£©µÄµãΪµãA£¬Ôò|OA|=2$\sqrt{3}$£®
Ôòµ±Ö±ÏßlÓëOA´¹Ö±Ê±£¬ÓÉ´¹¾¶¶¨ÀíµÃÖ±Ïßl±»Ô²O½ØµÃµÄÏÒ³¤Îªl=2$\sqrt{25-12}$=2$\sqrt{13}$£»
µ±Ö±Ïß¹ýÔ²ÐÄʱ£¬ÏÒ³¤×î´ó£¬¼´xÖá±»Ô²O½ØµÃµÄÏÒ³¤Îª2r=10£»                       
ËùÒÔÖ±Ïßl±»Ô²O½ØµÃµÄÏÒ³¤µÄȡֵ·¶Î§ÊÇ[2$\sqrt{13}$£¬10]£®
£¨3£©Ö¤Ã÷£º¶ÔÓÚÔ²OµÄ·½³Ìx2+y2=1£¬Áîx=¡À1£¬¼´P£¨-1£¬0£©£¬Q£¨1£¬0£©£®
ÓÖÖ±Ïßl·½³ÌΪx=3£¬ÉèM£¨s£¬t£©£¬
ÔòÖ±ÏßPM·½³ÌΪy=$\frac{t}{s+1}$£¨x+1£©£®
Áîx=3£¬µÃP'£¨3£¬$\frac{4t}{s+1}$£©£¬
ͬÀí¿ÉµÃ£ºQ'£¨3£¬$\frac{2t}{s-1}$£©£®
ËùÒÔÔ²CµÄÔ²ÐÄCµÄ×ø±êΪ£¨3£¬$\frac{3st-t}{{s}^{2}-1}$£©£¬°ë¾¶³¤Îª|$\frac{st-3t}{{s}^{2}-1}$|£¬
ÓÖµãM£¨s£¬t£©ÔÚÔ²ÉÏ£¬ÓÖs2+t2=1£®¹ÊÔ²ÐÄCΪ£¨3£¬$\frac{1-3s}{t}$£©£¬°ë¾¶³¤|$\frac{3-s}{t}$|£®
ËùÒÔÔ²CµÄ·½³ÌΪ£¨x-3£©2+£¨y-$\frac{1-3s}{t}$£©2=£¨$\frac{3-s}{t}$£©2£¬
ÓÖs2+t2=1£¬
¹ÊÔ²CµÄ·½³ÌΪ£¨x-3£©2+y2-$\frac{2£¨1-3s£©y}{t}$-8=0£¬
Áîy=0£¬Ôò£¨x-3£©2=8£¬
ËùÒÔÔ²C¾­¹ý¶¨µã£¬y=0£¬Ôòx=3¡À2$\sqrt{2}$£¬
ËùÒÔÔ²C¾­¹ý¶¨µãÇÒ¶¨µã×ø±êΪ£¨3¡À2$\sqrt{2}$£¬0£©£®

µãÆÀ ±¾Ì⿼²éµÄ֪ʶÊÇÖ±ÏߺÍÔ²µÄ·½³ÌµÄÓ¦Óã¬Ö÷Òª¿¼²éÔ²µÄ·½³ÌµÄÇ󷨣¬Í¬Ê±¿¼²éÔ²ºã¹ý¶¨µãµÄÇ󷨣¬×¢Òâת»¯ÎªÔ²Ïµ·½³ÌÊǽâ´ð±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÔ²CͬʱÂú×ãÏÂÁÐÈý¸öÌõ¼þ£º¢ÙÓëyÖáÏàÇУ»¢Ú°ë¾¶Îª4£»¢ÛÔ²ÐÄÔÚÖ±Ïßx-3y=0ÉÏ£®ÇóÔ²CµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®µÈ±ÈÊýÁÐ{an}ÖУ¬ÒÑÖªa1=1£¬a4=8£¬Èôa3£¬a5·Ö±ðΪµÈ²îÊýÁÐ{bn}µÄµÚ4ÏîºÍµÚ16Ï
£¨1£©ÇóÊýÁÐ{an}©p{bn}µÄͨÏʽ£»
£¨2£©Áîcn=an•bn£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®º¯Êýf£¨x£©=$\left\{\begin{array}{l}{\frac{1}{\sqrt{x}}£¬x£¾0}\\{{x}^{2}£¬x¡Ü0}\end{array}\right.$£¬Ôòf£¨f£¨-3£©£©=$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®¶ÔÓÚÈÎÒâµÄx¡ÊR£¬e|2x+1|+m¡Ý0ºã³ÉÁ¢£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ[-1£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=x2-4x-4£¬
£¨1£©Èô x¡Ê[0£¬5]ʱ£¬Çóf£¨x£©µÄÖµÓò£»
£¨2£©Èôx¡Ê[t£¬t+1]£¨t¡ÊR£©£¬Çóº¯Êýf£¨x£©µÄ×îСֵg£¨t£©µÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨2£¬-1£©£¬$\overrightarrow{b}$=$£¨-\frac{{\sqrt{3}}}{2}£¬-\frac{1}{2}£©$£¬ÇÒ£¨$\overrightarrow{a}$+k$\overrightarrow{b}$£©¡Í£¨$\overrightarrow{a}$-k$\overrightarrow{b}$£©£¬ÔòʵÊýk=¡À$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑ֪ʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}2x-y+1¡Ü0\\ x-2y-1¡Ý0\end{array}\right.$£¬Ôòz=-3x-yµÄ×îСֵΪ£¨¡¡¡¡£©
A£®9B£®$\sqrt{3}$C£®4D£®$\frac{5}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®´üÖÐ×°Óбê×ÅÊý×Ö1£¬2£¬3µÄСÇò¸÷2¸ö£¬´Ó´üÖÐÈÎÈ¡2¸öСÇò£¬Ã¿¸öСÇò±»È¡³öµÄ¿ÉÄÜÐÔ¶¼ÏàµÈ£®
£¨1£©ÇóÈ¡³öµÄ2¸öСÇòÉϵÄÊý×ÖÏàͬµÄ¸ÅÂÊ£»
£¨2£©Óæαíʾȡ³öµÄ2¸öСÇòÉϵÄÊý×ÖÖ®ºÍ£¬ÇóE¦Î£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸