精英家教网 > 高中数学 > 题目详情
9.函数f(x)=$\left\{\begin{array}{l}{\frac{1}{\sqrt{x}},x>0}\\{{x}^{2},x≤0}\end{array}\right.$,则f(f(-3))=$\frac{1}{3}$.

分析 直接利用函数的解析式求解函数值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{\frac{1}{\sqrt{x}},x>0}\\{{x}^{2},x≤0}\end{array}\right.$,则f(f(-3))=f(9)=$\frac{1}{\sqrt{9}}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.用0,1,2,3,4,5这六个数字.
(1)可组成多少个无重复数字的五位数?
(2)可组成多少个无重复数字的能被5整除的五位数?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在四面体S-ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,则该四面体的外接球的表面积为(  )
A.11πB.$\frac{28π}{3}$C.$\frac{10π}{3}$D.$\frac{40π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合P={1,3},则满足P∪Q={1,2,3,4}的集合Q的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)是定义在R上的奇函数,且x>0时,f(x)=lnx,则ef(-2)的值为(  )
A.$\frac{1}{e}$B.$\frac{1}{2}$C.$\frac{1}{{e}^{2}}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过点(-1,3)且与直线x-2y+1=0垂直的直线方程为y+2x-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设直线l的方程是x+my+2$\sqrt{3}$=0,圆O的方程是x2+y2=r2(r>0).
(1)当m取一切实数时,直线l与圆O都有公共点,求r的取值范围;
(2)r=5时,求直线l被圆O截得的弦长的取值范围;
(3)当r=1时,设圆O与x轴相交于P、Q两点,M是圆O上异于P、Q的任意一点,直线PM交直线l′:x=3于点P′,直线QM交直线l′于点Q′.求证:以P′Q′为直径的圆C总经过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$sin({\frac{π}{3}+α})=\frac{1}{3}$,则$cos({\frac{π}{3}-2α})$的值等于(  )
A.$-\frac{5}{9}$B.$-\frac{7}{9}$C.$\frac{5}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示是一次体操比赛时七位评委对某选手打分的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数和标准差分别为(  )
A.87.4,17.2B.87.4,4.147C.87,17.2D.87,4.147

查看答案和解析>>

同步练习册答案