| A. | 11π | B. | $\frac{28π}{3}$ | C. | $\frac{10π}{3}$ | D. | $\frac{40π}{3}$ |
分析 求出BC,利用正弦定理可得△ABC外接圆的半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥的外接球表面积.
解答 解:∵AC=2,AB=1,∠BAC=120°,
∴BC=$\sqrt{4+1-2×2×1×(-\frac{1}{2})}$=$\sqrt{7}$,
∴三角形ABC的外接圆半径为r,2r=$\frac{\sqrt{7}}{sin120°}$,r=$\frac{\sqrt{21}}{3}$,
∵SA⊥平面ABC,SA=2,
由于三角形OSA为等腰三角形,O是外接球的球心.
则有该三棱锥的外接球的半径R=$\sqrt{1+(\frac{\sqrt{21}}{3})^{2}}$=$\sqrt{\frac{10}{3}}$,
∴该三棱锥的外接球的表面积为S=4πR2=4π×($\sqrt{\frac{10}{3}}$)2=$\frac{40π}{3}$.
故选:D.
点评 本题考查三棱锥的外接球表面积,考查直线和平面的位置关系,确定三棱锥的外接球的半径是关键.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | $\sqrt{3}$ | C. | 4 | D. | $\frac{5}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com