精英家教网 > 高中数学 > 题目详情
5.已知定义域为(0,+∞)的函数f(x)满足:
①x>1时,f(x)<0;
②f(${\frac{1}{2}}$)=1;
③对任意的正实数x,y,都有f(xy)=f(x)+f(y).
(1)求证:f(${\frac{1}{x}}$)=-f(x);
(2)求证:f(x)在定义域内为减函数;
(3)求满足不等式f(log0.5m+3)+f(2log0.5m-1)≥-2的m集合.

分析 (1)令$x=1,y=\frac{1}{2}$,可求得f(1)=0,再令$y=\frac{1}{x}$,代入f(xy)=f(x)+f(y),即可证得:f(${\frac{1}{x}}$)=-f(x);
(2)设x1>x2>0,作差整理可得f(x1)-f(x2)=$f(\frac{x_1}{x_2})$,依题意,可得$f(\frac{x_1}{x_2})<0$,利用单调减函数的定义可证f(x)在(0,+∞)上为减函数;
(3)依题意,不等式f(log0.5m+3)+f(2log0.5m-1)≥-2可化为f[(log0.5m+3)(2log0.5m-1)]≥f(4),再利用(2)f(x)在(0,+∞)上为减函数可得不等式组$\left\{\begin{array}{l}{log_{0.5}}m>-3\\{log_{0.5}}m>\frac{1}{2}\\({log_{0.5}}m+3)(2{log_{0.5}}m-1)≤4\end{array}\right.$,解之即可.

解答 (本题共15分)
证明:(1)令$x=1,y=\frac{1}{2}$,$f(1×\frac{1}{2})=f(1)+f(\frac{1}{2})$,得f(1)=0,
令$y=\frac{1}{x}$,$f(x×\frac{1}{x})=f(x)+f(\frac{1}{x})=f(1)=0$,得$f(\frac{1}{x})=-f(x)$.…(4分)
(2)设x1>x2>0,f(x1)-f(x2)=$f({x_1})+f(\frac{1}{x_2})$=$f(\frac{x_1}{x_2})$,
∵x1>x2,∴$\frac{x_1}{x_2}>1$,∴$f(\frac{x_1}{x_2})<0$,即f(x1)-f(x2)<0,
∴f(x1)<f(x)2
∴f(x)在(0,+∞)上为减函数.  …(9分)
解:(3)∵$f(\frac{1}{2})+f(\frac{1}{2})=f(\frac{1}{4})=2$,∴$f(4)=-f(\frac{1}{4})=-2$.…(10分)
f(log0.5m+3)+f(2log0.5m-1)≥-2,f(log0.5m+3)+f(2log0.5m-1)≥f(4),即f[(log0.5m+3)(2log0.5m-1)]≥f(4),
∵f(x)定义域上是减函数(log0.5m+3)(2log0.5m-1)≤4,
∴$\left\{\begin{array}{l}{log_{0.5}}m>-3\\{log_{0.5}}m>\frac{1}{2}\\({log_{0.5}}m+3)(2{log_{0.5}}m-1)≤4\end{array}\right.$…(12分)
∴$\frac{1}{2}<{log_{0.5}}m≤1$,…(14分)
不等式的解集$\left\{{m\left|{\frac{1}{2}≤m<\frac{{\sqrt{2}}}{2}}\right.}\right\}$…(15分)

点评 本题考查抽象函数及其应用,着重考查赋值法的应用、突出考查利用函数单调性的定义判断函数的单调性,考查等价转化思想与函数方程思想的综合运用,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.(1)求函数f(x)=$\sqrt{x-1}$+$\frac{1}{2-x}$的定义域;
(2)求函数f(x)=$\frac{{2-{x^2}}}{{1+{x^2}}}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(4x2+6x+$\frac{9}{4}}$)4的展开式中,含有x4的项的系数为4374.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知实数x,y满足x-$\sqrt{x+1}$=$\sqrt{y+1}$-y,则x+y的取值范围是[-$\sqrt{5}$+1,$\sqrt{5}$+1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在四面体S-ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,则该四面体的外接球的表面积为(  )
A.11πB.$\frac{28π}{3}$C.$\frac{10π}{3}$D.$\frac{40π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若AD为△ABC的中线,现有质地均匀的粒子散落在△ABC内,则粒子落在△ABD内的概率等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合P={1,3},则满足P∪Q={1,2,3,4}的集合Q的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过点(-1,3)且与直线x-2y+1=0垂直的直线方程为y+2x-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设等比数列{an}的前n项和为Sn(n∈N*),若a1a3=8a2,且a1与a2的等差中项为12,则S5=(  )
A.496B.33C.31D.$\frac{31}{2}$

查看答案和解析>>

同步练习册答案