精英家教网 > 高中数学 > 题目详情
14.箱子中有4个分别标有号码1、2、3、4的小球,从中随机取出一个记下号码后放回,再随机取出一个记下号码,则两次记下的号码至少一个奇数的概率为$\frac{3}{4}$.

分析 从中随机取出一个记下号码后放回,再随机取出一个记下号码,共4×4=16种情种情况,而两次之都为偶数的情况有2×2=4种,进而可得两次记下的号码至少一个奇数的情况有12种,由等可能事件的概率公式计算可得答案.

解答 解:根据题意,设两个号码至少一个奇数的事件为A,
从中随机取出一个记下号码后放回,再随机取出一个记下号码,共4×4=16种情况,
而两次之都为偶数的情况有2×2=4种,
则两个号码至少一个为偶数的情况有16-4=12种;
故两次记下的号码至少一个奇数的概率为P(A)=$\frac{12}{16}$=$\frac{3}{4}$,
故答案为:$\frac{3}{4}$

点评 本题考查了古典概型的随机事件的概率公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在双曲线C:$\frac{x^2}{4}-\frac{y^2}{5}=1$中,F1,F2分别为双曲线C的左右两个焦点,P为双曲线上且在第一象限内的点,三角形PF1F2的重心为G,内心为I,若IG∥F1F2,则点P的横坐标为$\frac{2\sqrt{70}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知A${\;}_{n}^{2}$=7A${\;}_{n-4}^{2}$,则n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.旅游公司为3个旅游团提供甲、乙、丙、丁4条旅游线路,每个旅游团任选其中一条.
(1)求3个旅游团选择3条不同的线路的概率;
(2)求恰有2条线路没有被选择的概率;
(3)设选择甲线路旅游团的个数为ξ,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若a,b∈{-1,0,1,2},则函数f(x)=ax2+2x+b没有零点的概率为(  )
A.$\frac{3}{4}$B.$\frac{5}{8}$C.$\frac{13}{16}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.从某学校高三年级800名学生中随机抽取50名测量身高,据测量,被抽取学生的身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],如图是按上述分组方法得到的条形图.

(1)根据已知条件填写下面表格:
组别12345678
频数
(2)估计这所学校高三年级800名学生中身高在175cm以上(含175cm)的人数;
(3)在样本中,若第二组有1人为男生,其余为女生,第七组有1人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为同性别学生的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在二项式($\sqrt{x}$+$\frac{1}{2\sqrt{x}}$)n的展开式中,前三项系数成等差数列.
(I)求展开式中的常数项;
(Ⅱ)求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)的自变量x在区间I上,恒有f(x)<0(或f(x)>0),则称f(x)是区间I上的“负任性函数”(或“正任性函数”).已知g(x)=x-$\frac{1}{x}$,函数f(x)=mg(x)+g(mx)是区间[1,+∞)上的“负任性函数”,则实数m的取值范围是(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设圆的半径为4,沿x轴正向滚动,开始时圆与x轴相切于原点O.
(1)写出该圆初始位置的极坐标方程;
(2)记圆上动点为M,开始时M位于O处,它随圆的滚动而改变位置,写出圆滚动一周时M点的轨迹方程.

查看答案和解析>>

同步练习册答案