精英家教网 > 高中数学 > 题目详情
13.在《九章算术》中有一个古典名题“两鼠穿墙”问题:今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半,问何日相逢?大意是有厚墙五尺,两只老鼠从墙的两边分别打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半,问几天后两鼠相遇?(  )
A.2$\frac{2}{17}$B.2$\frac{3}{17}$C.2$\frac{5}{17}$D.2.25

分析 由于前两天大鼠打1+2尺,小鼠打1+$\frac{1}{2}$尺,因此前两天两鼠共打3+1.5=4.5.第三天,大鼠打4尺,小鼠打$\frac{1}{4}$尺,因此第三天相遇.设第三天,大鼠打y尺,小鼠打0.5-y尺,则$\frac{y}{4}$=$\frac{0.5-y}{\frac{1}{4}}$,解得y即可得出.

解答 解:由于前两天大鼠打1+2尺,小鼠打1+$\frac{1}{2}$尺,因此前两天两鼠共打3+1.5=4.5.
第三天,大鼠打4尺,小鼠打$\frac{1}{4}$尺,因此第三天相遇.
设第三天,大鼠打y尺,小鼠打0.5-y尺,
则$\frac{y}{4}$=$\frac{0.5-y}{\frac{1}{4}}$,解得y=$\frac{8}{17}$.
相见时大鼠打了1+2+$\frac{8}{17}$=3$\frac{8}{17}$尺长的洞,小鼠打了1+$\frac{1}{2}$+$\frac{1}{34}$=1$\frac{9}{17}$尺长的洞,
x=2+$\frac{2}{17}$=2$\frac{2}{17}$天,
故选:A.

点评 本题考查了等差数列与等比数列的通项公式求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:$\frac{x^2}{16}+\frac{y^2}{9}$=1,点A,B是它的两个焦点,当静止的小球放在点A处,从A点沿直线出发,经椭圆壁反弹后,再回到点A时,小球经过的最长路程是(  )
A.20B.18C.16D.14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若log2(a+3)+log2(a-1)=5,则a=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f(x)=1g$\frac{1+{2}^{x}+{3}^{x}+{4}^{x}•a}{4}$,其中a是实数,若f(x)当x∈(-∞,1]时有意义,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)为奇函数,函数f(x)与g(x)的图象关于直线y=x+1对称,若g(1)=4,则f(-3)=(  )
A.2B.-2C.-1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知O为坐标原点,F1、F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左右焦点,A为C的左顶点,P为C上一点,且PF1⊥x轴,过点A的直线l与线段PF1交于点M,与y轴交于点E,若直线F2M与y轴交点为N,OE=2ON,则C的离心率为(  )
A.$\frac{1}{3}$B.2C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.有两张卡片,一张的正反面分别画着老鼠和小鸡,另一张的正反面分别画着老鹰和蛇,现在有两个小孩随机地将两张卡片排在一起放在桌面上,不考虑顺序,则向上的图案是老鹰和小鸡的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f (x)=alnx+$\frac{1}{2}$x2-ax (a为常数).
(Ⅰ)试讨论f (x)的单调性;
(Ⅱ)若f (x)有两个极值点分别为x1,x2.不等式f (x1)+f (x2)<λ(x1+x2)恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,若输出的结果是6,则判断框内m的取值范围是(  )
A.(30,42]B.(20,30)C.(20,30]D.(20,42)

查看答案和解析>>

同步练习册答案